In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
Emerging two-dimensional(2D)layered metal carbide and nitride materials,commonly termed MXenes,are increasingly recognized for their applications across diverse fields such as energy,environment,and catalysis.In the p...Emerging two-dimensional(2D)layered metal carbide and nitride materials,commonly termed MXenes,are increasingly recognized for their applications across diverse fields such as energy,environment,and catalysis.In the past few years,MXenes/carbon nanotubes(CNTs)-based hybrids have attracted extensive attention as an important catalyst in energy and environmental fields,due to their superior multifunctions and mechanical stability.This review aims to address the fabrication strategies,the identification of the enhancement mechanisms,and recent progress regarding the design and modification of MXenes/CNTs-based hybrids.A myriad of fabrication techniques have been systematically summarized,including mechanical mixing,spray drying,three-dimensional(3D)printing,self-assembly/in-situ growth,freeze drying,templating,hydrothermal methods,chemical vapor deposition(CVD),and rolling.Importantly,the identification of the enhancement mechanisms was thoroughly discussed from the two dimensions of theoretical simulations and in-situ analysis.Moreover,the recent advancements in profound applications of MXenes/CNTs-based hybrids have also been carefully revealed,including energy storage devices,sensors,water purification systems,and microwave absorption.We also underscore anticipated challenges related to their fabrication,structure,underlying mechanisms,modification approaches,and emergent applications.Consequently,this review offers insights into prospective directions and the future trajectory for these promising hybrids.It is expected that this review can inspire new ideas or provide new research methods for future studies.展开更多
Photocatalysis is a green and environmentally-friendly process that utilizes the ubiquitous intermittent sunlight.To date,an emerging S-scheme heterojunction across the intimately coupled heterojunction materials is p...Photocatalysis is a green and environmentally-friendly process that utilizes the ubiquitous intermittent sunlight.To date,an emerging S-scheme heterojunction across the intimately coupled heterojunction materials is proposed to surpass the efficiency of conventional Ⅱ-type and Z-type photocatalysis.Further-more,S-scheme heterojunction photocatalysts with greatly improved photocatalytic performance have gained significant attention due to their fast charge carriers separation along with strong redox ability and stability,since its proposal in 2019.Herein,a timely and comprehensive review is highly desired to cover the state-of-the-art advances.Driven by this idea,the review conveys the recent progress and provides new insights into further developments.Unlike the conventional method,in this review,we im-plement a quantification model to outline current trends in S-scheme heterojunctions research as well as their correlations.The overview begins with the fundamentals of four basic photocatalytic mechanisms,followed by its design principles.Afterward,diverse characterization techniques used in the S-scheme heterojunctions are systematically summarized along with the modification strategies to boost photocat-alytic performances.Additionally,the internal reaction mechanism and emerging applications have been reviewed,including water conversion,CO_(2) remediation,wastewater treatment,H_(2)0_(2) production,N_(2) fix-ation,etc.To sum up the review,we present several current challenges and future prospects of the S-scheme heterojunctions photocatalysts,aiming to provide indispensable platforms for the future smart design of photocatalysts.展开更多
Due to their unique surface chemistry,highly adjustable metal components,hydrophilicity,and high carrier concentrations,MXenes are applied in a variety of scenarios.Similar to other two-dimensional(2D)materials,buildi...Due to their unique surface chemistry,highly adjustable metal components,hydrophilicity,and high carrier concentrations,MXenes are applied in a variety of scenarios.Similar to other two-dimensional(2D)materials,building heterostructures with additional materials to form a 3D porous architecture for MXenes can significantly enhance their functionality and reactivity.Notably,the open structures and well-defined pathways of these 3D structured MXenes can improve ionic and electronic transport,thereby promoting their applications in electrochemical energy storage,sensing,catalysis,and environment.In this review,the recent efforts made on preparing 3D porous MXenes with heterostructures,focusing on MXenes/C,MXenes/inorganics,and MXenes/polymers were summarized.The discussion covers aspects ranging from the design to synthesis of 3D porous MXenes,and their applications in photocatalysis,environmental monitoring and electrochemical energy storage.This review is concluded by presenting the prospects and insights on exploring the relationships between the porosity formation mechanisms,properties and applications of the 3D porous MXenes heterostructures.This review can provide meaningful guidance for the design,fabrication and application of 3D porous MXenes in high-performance materials and devices.展开更多
Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability.And it also is a ...Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability.And it also is a challenge area of research due to serious conflicts of both the solid and the void phase element densities in phase mixing domains of the topologies obtained by existing methods.Moreover,there is few work dealing with controlling distinct minimum feature length scales of real and void phase materials used in topology designs.A new method for solving the minimum length scale controlling problem of real and void material phases,is proposed.Firstly,we introduce two sets of coordinating design variable filters for these two material phases,and two distinct smooth Heaviside projection functions to destroy the serious conflicts in the existing methods(e.g.Guest Comput Methods Appl Mech Eng 199(14):123-135,2009).Then,by introducing an adaptive weighted 2-norm aggregation constraint function,we construct a coordinating topology optimization model to ensure distinct minimum length scale controls of real and void phase materials for the minimum compliance problem.By adopting a varied volume constraint limit scheme,this coordinating topology optimization model is transferred into a series of coordinating topology optimization sub-models so that the structural topology configuration can stably and smoothly changes during an optimization process.The structural topology optimization sub-models are solved by the method of moving asymptotes(MMA).Then,the proposed method is extended to the compliant mechanism design problem.Numerical examples are given to demonstrate that the proposed method is effective and can obtain a good 0/1 distribution final topology.展开更多
Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications,carbon-based materials have received great interest.However,the low selectivity and poor conductivity are ...Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications,carbon-based materials have received great interest.However,the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials(zero-dimensional(0D)/one-dimensional(1D)/two-dimensional(2D)),enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials.To improve hydrogen production,attempts are made to enlarge the surface area of porous three-dimensional(3D)carbon-based materials,achieve uniform interconnected porous channels,and enhance their stability,especially under extreme conditions.In this review,the structural advantages and performance improvements of porous carbon nanotubes(CNTs),g-C_(3)N_(4),covalent organic frameworks(COFs),metal-organic frameworks(MOFs),MXenes,and biomass-derived carbon-based materials are firstly summarized,followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods.These include,for example,photo/electrocatalytic hydrogen production,release from methanolysis of sodium borohydride,methane decomposition,and pyrolysis-gasification.The role that the active sites of porous carbon-based materials play in promoting charge transport,and enhancing electrical conductivity and stability,in a hydrogen production process is discussed.The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected.展开更多
Renewable energy powered electrocatalytic water splitting is a promising strategy for hydrogen generation,and the design and development of high-efficiency and earth-abundant electrocatalysts for hydrogen evolution re...Renewable energy powered electrocatalytic water splitting is a promising strategy for hydrogen generation,and the design and development of high-efficiency and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)are highly desirable.Herein,MoS2 nanoflowers decorated two-dimensional carbonitride-based MXene Ti3CN(OH)x hybrids have been constructed by etching and post-hydrothermal methods.The electrochemical performance of the as-obtained Ti_(3)CN(OH)_(x)@MoS_(2)hybrids having a quasi core-shell structure is fascinating:An overpotential of 120 mV and a Tafel slope of 64 mV∙dec^(−1)can be delivered at a current density of 10 mA∙cm^(−2).And after 3,000 cyclic voltammetry cycles,it can be seen that there is no apparent attenuation.Both the experimental results and density functional theory(DFT)calculations indicate that the synergetic effects between Ti_(3)CN(OH)x and MoS_(2)are responsible for the robust electrochemical HER performance.The electrons of-OH group in Ti_(3)CN(OH)x are transferred to MoS_(2),making the adsorption energy of the composite for H almost vanish.The metallic Ti_(3)CN(OH)x is also beneficial to the fast charge transfer kinetics.The construction of MXene-based hybrids with optimal electronic structure and unique morphology tailored to the applications can be further used in other promising energy storage and conversion devices.展开更多
The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program“Key Fundamental Scientific Problems on Mechanical Equipment Remanufactu...The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program“Key Fundamental Scientific Problems on Mechanical Equipment Remanufacturing”are reviewed in this work.Large centrifugal compressor impeller blanks were used as the study object.The materials of the blanks were FV520B and KMN.The mechanism and evaluation model of ultra-high cycle fatigue,erosion wear,and corrosion damage were studied via theoretical calculation,finite element simulation,and experimentation.For ultra-high cycle fatigue damage,the characteristics of ultra-high cycle fatigue of the impeller material were clarified,and prediction models of ultra-high cycle fatigue strength were established.A residual life evaluation technique based on the“b-HV-N”(where b was the nonlinear parameter,HV was the Vickers hardness,and N was the fatigue life)double criterion method was proposed.For erosion wear,the flow field of gas-solid two-phase flow inside the impeller was simulated,and the erosion wear law was clarified.Two models for erosion rate and erosion depth calculation were established.For corrosion damage,the electrochemical and stress corrosion behaviors of the impeller material and welded joints in H2S/CO2 environment were investigated.KISCC(critical stress intensity factor)and da/dt(crack growth rate,where a is the total crack length and t is time)varied with H2S concentration and temperature,and their variation laws were revealed.Through this research,the key scientific problems of the damage behavior and mechanism of remanufacturing objects in the multi-strength field and cross-scale were solved.The findings provide theoretical and evaluation model support for the analysis and evaluation of large centrifugal compressor impellers before remanufacturing.展开更多
The unprecedented NHC-mediated oxidation of imines to amides is described.This protocol features broad substrate scope and allows rapid assembly of amides in good to high yields.Notably,this process includes not only ...The unprecedented NHC-mediated oxidation of imines to amides is described.This protocol features broad substrate scope and allows rapid assembly of amides in good to high yields.Notably,this process includes not only the umpolung of imines,but also the discovery of NHC-bound 1,2-dioxetane intermediates.展开更多
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金supported by the National Natural Science Foundation of China(No.62004143)the Key R&D Program of Hubei Province(No.2022BAA084).
文摘Emerging two-dimensional(2D)layered metal carbide and nitride materials,commonly termed MXenes,are increasingly recognized for their applications across diverse fields such as energy,environment,and catalysis.In the past few years,MXenes/carbon nanotubes(CNTs)-based hybrids have attracted extensive attention as an important catalyst in energy and environmental fields,due to their superior multifunctions and mechanical stability.This review aims to address the fabrication strategies,the identification of the enhancement mechanisms,and recent progress regarding the design and modification of MXenes/CNTs-based hybrids.A myriad of fabrication techniques have been systematically summarized,including mechanical mixing,spray drying,three-dimensional(3D)printing,self-assembly/in-situ growth,freeze drying,templating,hydrothermal methods,chemical vapor deposition(CVD),and rolling.Importantly,the identification of the enhancement mechanisms was thoroughly discussed from the two dimensions of theoretical simulations and in-situ analysis.Moreover,the recent advancements in profound applications of MXenes/CNTs-based hybrids have also been carefully revealed,including energy storage devices,sensors,water purification systems,and microwave absorption.We also underscore anticipated challenges related to their fabrication,structure,underlying mechanisms,modification approaches,and emergent applications.Consequently,this review offers insights into prospective directions and the future trajectory for these promising hybrids.It is expected that this review can inspire new ideas or provide new research methods for future studies.
基金National Natural Science Foundation of China(Grant No.62004143)Key R&D Program of Hubei Province(Grant No.2022BAA084).
文摘Photocatalysis is a green and environmentally-friendly process that utilizes the ubiquitous intermittent sunlight.To date,an emerging S-scheme heterojunction across the intimately coupled heterojunction materials is proposed to surpass the efficiency of conventional Ⅱ-type and Z-type photocatalysis.Further-more,S-scheme heterojunction photocatalysts with greatly improved photocatalytic performance have gained significant attention due to their fast charge carriers separation along with strong redox ability and stability,since its proposal in 2019.Herein,a timely and comprehensive review is highly desired to cover the state-of-the-art advances.Driven by this idea,the review conveys the recent progress and provides new insights into further developments.Unlike the conventional method,in this review,we im-plement a quantification model to outline current trends in S-scheme heterojunctions research as well as their correlations.The overview begins with the fundamentals of four basic photocatalytic mechanisms,followed by its design principles.Afterward,diverse characterization techniques used in the S-scheme heterojunctions are systematically summarized along with the modification strategies to boost photocat-alytic performances.Additionally,the internal reaction mechanism and emerging applications have been reviewed,including water conversion,CO_(2) remediation,wastewater treatment,H_(2)0_(2) production,N_(2) fix-ation,etc.To sum up the review,we present several current challenges and future prospects of the S-scheme heterojunctions photocatalysts,aiming to provide indispensable platforms for the future smart design of photocatalysts.
基金supported by the National Natural Science Foundation of China(62004143)the Key R&D Program of Hubei Province(2022BAA084)+2 种基金the Central Government Guided Local Science and Technology Development Special Fund Project(2020ZYYD033)the Opening Fund of the Key Laboratory of Rare Mineral,Ministry of Natural Resources(KLRM-KF 202005)the Opening Fund of the Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology(GCP202101)。
文摘Due to their unique surface chemistry,highly adjustable metal components,hydrophilicity,and high carrier concentrations,MXenes are applied in a variety of scenarios.Similar to other two-dimensional(2D)materials,building heterostructures with additional materials to form a 3D porous architecture for MXenes can significantly enhance their functionality and reactivity.Notably,the open structures and well-defined pathways of these 3D structured MXenes can improve ionic and electronic transport,thereby promoting their applications in electrochemical energy storage,sensing,catalysis,and environment.In this review,the recent efforts made on preparing 3D porous MXenes with heterostructures,focusing on MXenes/C,MXenes/inorganics,and MXenes/polymers were summarized.The discussion covers aspects ranging from the design to synthesis of 3D porous MXenes,and their applications in photocatalysis,environmental monitoring and electrochemical energy storage.This review is concluded by presenting the prospects and insights on exploring the relationships between the porosity formation mechanisms,properties and applications of the 3D porous MXenes heterostructures.This review can provide meaningful guidance for the design,fabrication and application of 3D porous MXenes in high-performance materials and devices.
基金supported by the National Natural Science Foundation of China(11772070 and 11372055)the Hunan Provincial Natural Science Foundation of China(2019JJ40296)。
文摘Minimum length scale control on real and void material phases in topology optimization is an important topic of research with direct implications on numerical stability and solution manufacturability.And it also is a challenge area of research due to serious conflicts of both the solid and the void phase element densities in phase mixing domains of the topologies obtained by existing methods.Moreover,there is few work dealing with controlling distinct minimum feature length scales of real and void phase materials used in topology designs.A new method for solving the minimum length scale controlling problem of real and void material phases,is proposed.Firstly,we introduce two sets of coordinating design variable filters for these two material phases,and two distinct smooth Heaviside projection functions to destroy the serious conflicts in the existing methods(e.g.Guest Comput Methods Appl Mech Eng 199(14):123-135,2009).Then,by introducing an adaptive weighted 2-norm aggregation constraint function,we construct a coordinating topology optimization model to ensure distinct minimum length scale controls of real and void phase materials for the minimum compliance problem.By adopting a varied volume constraint limit scheme,this coordinating topology optimization model is transferred into a series of coordinating topology optimization sub-models so that the structural topology configuration can stably and smoothly changes during an optimization process.The structural topology optimization sub-models are solved by the method of moving asymptotes(MMA).Then,the proposed method is extended to the compliant mechanism design problem.Numerical examples are given to demonstrate that the proposed method is effective and can obtain a good 0/1 distribution final topology.
基金supported by the National Natural Science Foundation of China(No.62004143)the Central Government Guided Local Science and Technology Development Special Fund Project(No.2020ZYYD033)+1 种基金the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology(No.GCP202101)the Natural Science Fund of Hubei Province(No.2021CFB133).
文摘Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications,carbon-based materials have received great interest.However,the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials(zero-dimensional(0D)/one-dimensional(1D)/two-dimensional(2D)),enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials.To improve hydrogen production,attempts are made to enlarge the surface area of porous three-dimensional(3D)carbon-based materials,achieve uniform interconnected porous channels,and enhance their stability,especially under extreme conditions.In this review,the structural advantages and performance improvements of porous carbon nanotubes(CNTs),g-C_(3)N_(4),covalent organic frameworks(COFs),metal-organic frameworks(MOFs),MXenes,and biomass-derived carbon-based materials are firstly summarized,followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods.These include,for example,photo/electrocatalytic hydrogen production,release from methanolysis of sodium borohydride,methane decomposition,and pyrolysis-gasification.The role that the active sites of porous carbon-based materials play in promoting charge transport,and enhancing electrical conductivity and stability,in a hydrogen production process is discussed.The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected.
基金supported by the National Natural Science Foundation of China(Nos.62004143 and 21902108)the Key Research and Development(R&D)Program of Hubei Province(No.2022BAA084)+1 种基金the Central Government Guided Local Science and Technology Development Special Fund Project(No.2020ZYYD033),the Natural Science Foundation of Hubei Province(No.2021CFB133)the Knowledge Innovation Program of Wuhan-Shuguang Project(No.2022010801020355).
文摘Renewable energy powered electrocatalytic water splitting is a promising strategy for hydrogen generation,and the design and development of high-efficiency and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)are highly desirable.Herein,MoS2 nanoflowers decorated two-dimensional carbonitride-based MXene Ti3CN(OH)x hybrids have been constructed by etching and post-hydrothermal methods.The electrochemical performance of the as-obtained Ti_(3)CN(OH)_(x)@MoS_(2)hybrids having a quasi core-shell structure is fascinating:An overpotential of 120 mV and a Tafel slope of 64 mV∙dec^(−1)can be delivered at a current density of 10 mA∙cm^(−2).And after 3,000 cyclic voltammetry cycles,it can be seen that there is no apparent attenuation.Both the experimental results and density functional theory(DFT)calculations indicate that the synergetic effects between Ti_(3)CN(OH)x and MoS_(2)are responsible for the robust electrochemical HER performance.The electrons of-OH group in Ti_(3)CN(OH)x are transferred to MoS_(2),making the adsorption energy of the composite for H almost vanish.The metallic Ti_(3)CN(OH)x is also beneficial to the fast charge transfer kinetics.The construction of MXene-based hybrids with optimal electronic structure and unique morphology tailored to the applications can be further used in other promising energy storage and conversion devices.
文摘The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program“Key Fundamental Scientific Problems on Mechanical Equipment Remanufacturing”are reviewed in this work.Large centrifugal compressor impeller blanks were used as the study object.The materials of the blanks were FV520B and KMN.The mechanism and evaluation model of ultra-high cycle fatigue,erosion wear,and corrosion damage were studied via theoretical calculation,finite element simulation,and experimentation.For ultra-high cycle fatigue damage,the characteristics of ultra-high cycle fatigue of the impeller material were clarified,and prediction models of ultra-high cycle fatigue strength were established.A residual life evaluation technique based on the“b-HV-N”(where b was the nonlinear parameter,HV was the Vickers hardness,and N was the fatigue life)double criterion method was proposed.For erosion wear,the flow field of gas-solid two-phase flow inside the impeller was simulated,and the erosion wear law was clarified.Two models for erosion rate and erosion depth calculation were established.For corrosion damage,the electrochemical and stress corrosion behaviors of the impeller material and welded joints in H2S/CO2 environment were investigated.KISCC(critical stress intensity factor)and da/dt(crack growth rate,where a is the total crack length and t is time)varied with H2S concentration and temperature,and their variation laws were revealed.Through this research,the key scientific problems of the damage behavior and mechanism of remanufacturing objects in the multi-strength field and cross-scale were solved.The findings provide theoretical and evaluation model support for the analysis and evaluation of large centrifugal compressor impellers before remanufacturing.
基金the National Natural Science Foundation of China(No.21871160,21672121,22071130)the Hubei Provincial Department of Education(T201419)+1 种基金the Education Department of Hubei Province Science and Technology Research Project(No.Q20162803)Tsinghua University for their generous financial support.
文摘The unprecedented NHC-mediated oxidation of imines to amides is described.This protocol features broad substrate scope and allows rapid assembly of amides in good to high yields.Notably,this process includes not only the umpolung of imines,but also the discovery of NHC-bound 1,2-dioxetane intermediates.