The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese...The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.展开更多
The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Const...The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Constructing a robust artificial solid electrolyte interphase(SEI)and regulating the lithium deposition behavior is an effective strategy to address these issues.Herein,a three-dimensional(3D)lithium anode with gradient Li_(3)N has been in-situ fabricated on carbon-based framework by thermal diffusion method(denoted as CC/Li/Li_(3)N).Density functional theory(DFT)calculations reveal that Li_(3)N can effectively promote the transport of Li^(+)due to the low energy barrier of Li^(+)diffusion.As expected,the Li_(3)N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions,but also facilitate fast Li^(+)transport across the SEI layer.The anode matrix with uniformly distributed Li3N can enable homogenous deposition of Li,thus preventing Li dendrite propagation.Benefiting from these merits,the CC/Li/Li_(3)N anode achieves ultralong-term cycling for>1000 h at a current density of 2 m A cm^(-2)and dendrite-free Li deposition at an ultrahigh rate of 20 m A cm^(-2).Moreover,the full cells coupled with LiFePO4cathodes show extraordinary cycling stability for>300 cycles in liquidelectrolyte-based batteries and display a high-capacity retention of 96.7%after 100 cycles in solid-state cells,demonstrating the promising prospects for the practical applications of LMBs.展开更多
Acute kidney injury(AKI)leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs.Here,a series of polyvinylpyrrolidone(PVP)-curcumin nanopa...Acute kidney injury(AKI)leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs.Here,a series of polyvinylpyrrolidone(PVP)-curcumin nanoparticles(PCurNP)are designed to meet the renal excretion threshold(~45 kDa),presenting a controllable delivery nanosystem for kidney targeting.Renal accumulation of the relatively small nanoparticles,^(89)Zr-PCurNP M10 with the diameter between 5 and 8 nm,is found to be 1.7 times and 1.8 times higher than the accumulation of^(89)Zr-PCurNP M29(20-50 nm)and M40(20-50 nm)as revealed by PET imaging.Furthermore,serum creatinine analysis,kidney tissues histology,and tubular injury scores revealed that PCurNP M10 efficiently treated cisplatin-induced AKI.Herein,PCurNP offers a novel and simple strategy for precise PET image-guided drug delivery of renal protective materials.展开更多
基金supported by the National Natural Science Foundation of China(22078251)Hubei Province Key Research and Development Program(2023DJC167)the research project of Hubei Provincial Department of Education(D20191504).
文摘The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications.
基金supported by the National Natural Science Foundation of China(22078251)the National Key R&D Program of China(2021YFB2012000)+1 种基金the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University(JDGD-202211)the Graduate Innovation Fund of Wuhan Institute of Technology(CX2021014)。
文摘The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Constructing a robust artificial solid electrolyte interphase(SEI)and regulating the lithium deposition behavior is an effective strategy to address these issues.Herein,a three-dimensional(3D)lithium anode with gradient Li_(3)N has been in-situ fabricated on carbon-based framework by thermal diffusion method(denoted as CC/Li/Li_(3)N).Density functional theory(DFT)calculations reveal that Li_(3)N can effectively promote the transport of Li^(+)due to the low energy barrier of Li^(+)diffusion.As expected,the Li_(3)N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions,but also facilitate fast Li^(+)transport across the SEI layer.The anode matrix with uniformly distributed Li3N can enable homogenous deposition of Li,thus preventing Li dendrite propagation.Benefiting from these merits,the CC/Li/Li_(3)N anode achieves ultralong-term cycling for>1000 h at a current density of 2 m A cm^(-2)and dendrite-free Li deposition at an ultrahigh rate of 20 m A cm^(-2).Moreover,the full cells coupled with LiFePO4cathodes show extraordinary cycling stability for>300 cycles in liquidelectrolyte-based batteries and display a high-capacity retention of 96.7%after 100 cycles in solid-state cells,demonstrating the promising prospects for the practical applications of LMBs.
基金supported by the National Natural Science Foundation of China(81601605,21571147,82102121)the Postdoctoral Science Foundation of China(2016M600670)+2 种基金supported by the University of Wisconsin–Madison,the National Institutes of Health(NIBIB/NCI P30CA014520)the Natural Science Foundation of SZU(Grant No.827-000143)the Shenzhen Peacock Plan(KQTD2016053112051497).
文摘Acute kidney injury(AKI)leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs.Here,a series of polyvinylpyrrolidone(PVP)-curcumin nanoparticles(PCurNP)are designed to meet the renal excretion threshold(~45 kDa),presenting a controllable delivery nanosystem for kidney targeting.Renal accumulation of the relatively small nanoparticles,^(89)Zr-PCurNP M10 with the diameter between 5 and 8 nm,is found to be 1.7 times and 1.8 times higher than the accumulation of^(89)Zr-PCurNP M29(20-50 nm)and M40(20-50 nm)as revealed by PET imaging.Furthermore,serum creatinine analysis,kidney tissues histology,and tubular injury scores revealed that PCurNP M10 efficiently treated cisplatin-induced AKI.Herein,PCurNP offers a novel and simple strategy for precise PET image-guided drug delivery of renal protective materials.