The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resista...The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).展开更多
A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-s...A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.展开更多
A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron t...A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.展开更多
The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported alongthe axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and inves...The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported alongthe axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The electron trajectories and the small signal gain are derived. The characteristic of the linear gain and the normalized maximum gain are studied numerically. The result shows that the normalized maximum gain is considerably enhanced in comparison with that of the single stream. The effect of the difference between the energies of the two beams in this configuration of FEL is also considered, and we find that the gain is affected by the energy differences between groups 1 and 2.展开更多
文摘The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).
基金Project supported by the Plasma Physics Research Center,Science and Research Branch,Islamic Azad University
文摘A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.
文摘A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.
文摘The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported alongthe axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The electron trajectories and the small signal gain are derived. The characteristic of the linear gain and the normalized maximum gain are studied numerically. The result shows that the normalized maximum gain is considerably enhanced in comparison with that of the single stream. The effect of the difference between the energies of the two beams in this configuration of FEL is also considered, and we find that the gain is affected by the energy differences between groups 1 and 2.