Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury.Autologous mitochondrial transplantation is also beneficial in pediatric...Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury.Autologous mitochondrial transplantation is also beneficial in pediatric patients with cardiac ischemia-reperfusion injury.Thus,transplantation of functional exogenous mitochondria may be a promising therapeutic approach for ischemic disease.To explore the neuroprotective effect of mitochondria transplantation and determine the underlying mechanism in ischemic stroke,in this study we established a photo-thrombosis-induced mouse model of focal ischemia and administered freshly isolated mitochondria via the tail vein or to the injury site(in situ).Animal behavior tests,immunofluorescence staining,2,3,5-triphenyltetrazolium chloride(TTC)staining,mRNA-seq,and western blotting were used to assess mouse anxiety and memory,cortical infarct area,pyroptosis,and neurogenesis,respectively.Using bioinformatics analysis,western blotting,co-immunoprecipitation,and mass spectroscopy,we identified S100 calcium binding protein A9(S100A9)as a potential regulator of mitochondrial function and determined its possible interacting proteins.Interactions between exogenous and endogenous mitochondria,as well as the effect of exogenous mitochondria on recipient microglia,were assessed in vitro.Our data showed that:(1)mitochondrial transplantation markedly reduced mortality and improved emotional and cognitive function,as well as reducing infarct area,inhibiting pyroptosis,and promoting cortical neurogenesis;(2)microglial expression of S100A9 was markedly increased by ischemic injury and regulated mitochondrial function;(3)in vitro,exogenous mitochondria enhanced mitochondrial function,reduced redox stress,and regulated microglial polarization and pyroptosis by fusing with endogenous mitochondria;and(4)S100A9 promoted internalization of exogenous mitochondria by the microglia,thereby amplifying their pro-proliferation and anti-inflammatory effects.Taken together,our findings show that mitochondrial transplantation protects against the deleterious effects of ischemic stroke by suppressing pyroptosis and promoting neurogenesis,and that S100A9 plays a vital role in promoting internalization of exogenous mitochondria.展开更多
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit...In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.展开更多
BACKGROUND The mucosal barrier's immune-brain interactions,pivotal for neural development and function,are increasingly recognized for their potential causal and therapeutic relevance to irritable bowel syndrome(I...BACKGROUND The mucosal barrier's immune-brain interactions,pivotal for neural development and function,are increasingly recognized for their potential causal and therapeutic relevance to irritable bowel syndrome(IBS).Prior studies linking immune inflammation with IBS have been inconsistent.To further elucidate this relationship,we conducted a Mendelian randomization(MR)analysis of 731 immune cell markers to dissect the influence of various immune phenotypes on IBS.Our goal was to deepen our understanding of the disrupted brain-gut axis in IBS and to identify novel therapeutic targets.AIM To leverage publicly available data to perform MR analysis on 731 immune cell markers and explore their impact on IBS.We aimed to uncover immunophenotypic associations with IBS that could inform future drug development and therapeutic strategies.METHODS We performed a comprehensive two-sample MR analysis to evaluate the causal relationship between immune cell markers and IBS.By utilizing genetic data from public databases,we examined the causal associations between 731 immune cell markers,encompassing median fluorescence intensity,relative cell abundance,absolute cell count,and morphological parameters,with IBS susceptibility.Sensitivity analyses were conducted to validate our findings and address potential heterogeneity and pleiotropy.RESULTS Bidirectional false discovery rate correction indicated no significant influence of IBS on immunophenotypes.However,our analysis revealed a causal impact of IBS on 30 out of 731 immune phenotypes(P<0.05).Nine immune phenotypes demonstrated a protective effect against IBS[inverse variance weighting(IVW)<0.05,odd ratio(OR)<1],while 21 others were associated with an increased risk of IBS onset(IVW≥0.05,OR≥1).CONCLUSION Our findings underscore a substantial genetic correlation between immune cell phenotypes and IBS,providing valuable insights into the pathophysiology of the condition.These results pave the way for the development of more precise biomarkers and targeted therapies for IBS.Furthermore,this research enriches our comprehension of immune cell roles in IBS pathogenesis,offering a foundation for more effective,personalized treatment approaches.These advancements hold promise for improving IBS patient quality of life and reducing the disease burden on individuals and their families.展开更多
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling text...LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.展开更多
Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on th...Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on the anode.Despite numerous strategies to alleviate these side reactions have been demonstrated,they can only provide limited performance improvement from a single aspect.Herein,a triple-functional additive with trace amounts,ammonium hydroxide,was demonstrated to comprehensively protect zinc anodes.The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes.Moreover,cationic NH^(4+)can preferentially adsorb on the Zn anode surface to shield the“tip effect”and homogenize the electric field.Benefitting from this comprehensive protection,dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized.Besides,improved electrochemical performances can also be achieved in Zn//MnO_(2)full cells by taking the advantages of this triple-functional additive.This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.展开更多
Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plas...Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plasticity simulation was utilized to illustrate the influence of slip activity on rolling texture development.The results show that the rolling texture is largely depended on deformation temperature.Unlike commercial Mg alloys,the critical resolved shear stress of basal slip inα-Mg phase of Mg-Li alloy decreased more significantly by increasing temperature compared to that of pyramidal<c+a>slip.Enhancement of basal slip by increasing temperature triggered a decrease of split angle of basal poles for the double-peak texture.Prismaticslip largely enhanced by increasing temperature upon 200℃,which induced a wider orientation spread along the transverse direction.For theβ-Li phase,the promotion of{110}<111>slip system at elevated temperature triggered the enhancement of{211}<110>and{111}<211>texture components.The cryo-rolled sample exhibited the highest strength compared to the others due to a strong hardening behavior at this temperature.A two-stage hardening behavior was observed in these as-rolled dual-phase alloys.Strain transition at phase boundaries could be the reason for appearance of this two-stage hardening.展开更多
In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic co...In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.展开更多
It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li ...It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li alloys has not been fully understood. Firstly, the air-formed films formed on α and β phases in a dual-phase LZ91 Mg-Li alloy after exposure to laboratory air for up to 48 h have been examined by SEM under the assistance of ultramicrotomy. Then, the effect of the air-formed film on surface potential and, consequently, corrosion/oxidation behavior of the alloy has been investigated. Finally, in order to exclude the influence from α phase, the structure of the air-formed film on β phase and its effect on corrosion/oxidation behavior of Mg-Li alloys have been studied based on a single-phase LA141 Mg-Li alloy. The results show that the air-formed film is thin and negligible on α phase but thick on β phase after prolonged exposure to laboratory air. The thick air-formed film on β phase has a multilayer structure with an inner layer consisting of Mg O/Mg(OH)_(2) and outer layer consisting of Li_(2)CO_(3), which greatly elevates the surface potential of β phase in air. Both LZ91 and LA141 Mg-Li alloys firstly undergo uniform corrosion and then filiform corrosion when immersed in Na Cl solution and the pre-existed air-formed film on β-Li phase can retard the occurrence of filiform corrosion in the alloys.展开更多
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How...Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.展开更多
Many attentions have been previously focused to identify the multiple biochemical components related to tea quality and health benefits,however, the natural variation of biochemical components present in tea germplasm...Many attentions have been previously focused to identify the multiple biochemical components related to tea quality and health benefits,however, the natural variation of biochemical components present in tea germplasm has not been adequately evaluated. In this study, the main biochemical components, leaf morphological and yield characteristics were evaluated for four rounds of tea leaves in a panel of 87 elite tea cultivars suitable for black, green, or oolong tea. Significant variations were observed among the tea cultivars, as well as seasonal differences in the levels of the free amino acid(FAA), caffeine(CAF), tea polyphenols(TP), water extract(WE) and TP to FAA ratio(TP/FAA). Results showed that the average levels of FAA showed a seasonal change, with the highest level of 4.0% in the 1st spring tea in the cultivars suitable for green tea and the lowest of 3.2% in summer tea in the cultivars suitable for black tea. The average CAF content was highest 3.2% in the cultivars suitable for oolong tea in the 1st spring and the lowest 2.5% in the cultivars suitable for green tea in summer. Limited seasonal and varietal variations were noticed in the average levels of WE among the three categories of tea. In addition, significant natural variation of the morphological characteristics, bud length varying from 2.5 cm to 8.7 cm, bud density from 190.3 buds · m-2to 1 730.3 buds · m-2, mature leaves biomass from 128.4 kg · hm-2to 2 888.4 kg · hm-2, and yield component traits of 100 buds(one bud with two leaves) dry weight from 3.7 g to37.7 g, tea yield/round from 444.6 kg · hm-2to 905.3 kg · hm-2, were observed. The aim of our evaluation was not only to identify the advantages of seasonal and clonal variations but also to provide a new viewpoint for their further application. Representative accessions were selected from the germplasm to promote the establishment of an inherent biochemical constituent expressing the quality of black, green, and oolong tea. The findings might be utilized to establish early selection criteria to enhance the tea breeding and production program.展开更多
A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The statio...A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The station density and observation frequency are encrypted to obtain observation data with higher spatial and temporal resolution.The original message with fixed element data location is the data combination of all observation elements and the maximum observation gradient of each element,which not only has higher invalid data redundancy,but also restricts the efficiency of data collection and processing,and also increases communication costs.An adaptive coding design method for the original message of automatic weather station is proposed.The embedded software coding algorithm of the weather station collector is optimized according to"plug and output"to realize intelligent networking,intelligent identification of observation elements and gradients,and dynamic flexible output of messages with variable length.The intelligent networking and business application of nearly 4000 automatic weather stations across the province show that the networking data acquisition and processing are efficient and stable.展开更多
In view of the problems of decreased unit yield,soil acidification,decreased soil organic matter and soil fertility caused by high generation single pure Eucalyptus plantation in southern Guangxi,a field experiment wa...In view of the problems of decreased unit yield,soil acidification,decreased soil organic matter and soil fertility caused by high generation single pure Eucalyptus plantation in southern Guangxi,a field experiment was conducted to study the yield,soil organic matter and soil fertility under six soil conditioning measures[interplanting Tephrosia candida under the forest,interplanting Sesbania cannabina under the forest,organic fertilizer application,residue to woodland,soil testing and formulated fertilization,and applying pure chemical fertilizer(CK)],and the enhancing effects of each treatment on the yield and soil improvement of Eucalyptus plantations were further comprehensively evaluated.The results showed that compared with the control,the five treatments could increase the average stock of Eucalyptus,among which the average stock under the treatment of interplanting T.candida under the forest was the highest,followed by soil testing and formulated fertilization.The soil organic matter content and soil fertility of the forest were significantly improved by interplanting green manure,organic fertilizer application and soil testing and formulated fertilization models,while the short-term(1 a)effect of the residue treatment on the improvement of soil organic matter and soil fertility was insignificant.During the actual production process,interplanting green manure and residue treatment were not effective due to the inoperability,and the applicability were not wide,which still needed further study.Therefore,organic manure application and soil testing and formulated fertilization were suitable choices to promote the improvement of productivity and soil quality of Eucalyptus plantation in Guangxi.展开更多
Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition(EMT), during which cells dedifferentiate from a relative...Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition(EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas(TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This "paradox" can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating m RNA and micro RNA(mi RNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major mi RNAs and 214 m RNAs. Among the 8 mi RNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 mi RNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.展开更多
Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e....Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.展开更多
To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,S...To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,South China.The contents of Se in soils derived from granitoid and basalt are,respectively,0.19±0.12 mg/kg and 0.34±0.39 mg/kg,which are much higher than Se contents in granitoid and basalt.Selenium shows remarkable enrichment from granitoid and basalt to soils.The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg,which is significantly higher than that of basalt(0.0058±0.0039 mg/kg).Although soil derived from basalt shows higher Se contents,Se contents in rice samples,mobile fractions of Se in soils,and biological concentration factor(BCF)is similar or even lower than that from granitoid.Basalt consist of calcic plagioclase and pyroxene,and are much richer in Fe,Al,and Ca than granitoid.Correspondingly,the basalt-derived soils have higher goethite,hematite,kaolinite,cation exchange capacity(CEC)content,and higher p H than the granitoid-derived soils,which result in higher adsorption capacity for Se and relatively lower Se bioavailability.Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice.展开更多
Sex-determining region Y box-containing genes are transcription factors with roles in multiple biological processes, including cell differentiation, proliferation, and apoptosis.Sex-determining region Y box-containing...Sex-determining region Y box-containing genes are transcription factors with roles in multiple biological processes, including cell differentiation, proliferation, and apoptosis.Sex-determining region Y box-containing genes have also been shown to act as regulators and biomarkers in the progression of many different cancers, including gynecological cancers such as ovarian, cervical,and endometrial cancer.In this review, we summarize the contrasting regulatory roles of Sex-determining region Y box-containing genes in different gynecological cancers, as promotors with high expression levels or as suppressors with low expression levels.Expression levels of Sex-determining region Y box-containing genes were also identified as biomarkers of clinical features, including International Federation of Gynecology and Obstetrics stage, histopathologic grade together with disease-free survival, and treatment efficacy in patients with gynecological cancers.An understanding of the mechanisms whereby Sex-determining region Y box-containing genes regulate the progression of gynecological cancers will aid in the development of novel diagnostic and therapeutic strategies, while analysis of Sex-determining region Y box-containing expression levels will help to predict the prognosis of patients with gynecological cancers.展开更多
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon ...Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.展开更多
Conjugated polymers are commonly used as effective hole transport materials(HTMs) for preparation of high-performance perovskite solar cells. However, the hydrophobic nature of these materials renders it difficult to ...Conjugated polymers are commonly used as effective hole transport materials(HTMs) for preparation of high-performance perovskite solar cells. However, the hydrophobic nature of these materials renders it difficult to deposit photovoltaic perovskite layers on top via solution processing. In this article, we report a generic surface modification strategy that enables the deposition of uniform and dense perovskite films on top of non-wetting interfaces. In contrast to the previous proposed chemical modifications which might alter the optoelectronic properties of the interfacial layers, we realized a nondestructive surface modification enabled by introducing a layer of insulating mesoporous aluminum oxide(Al2O3). The surface energies of the typical non-wetting hole-transport layers(PTAA, P3 HT, and Poly-TPD) were significantly reduced by the Al2O3 modification. Benefiting from the intact optoelectronic properties of the HTMs, perovskite solar cells deposited on these interface materials show full open-circuit voltages( V OC) with high fill factors(FF) up to 80%. Our method provides an effective avenue for exploiting the full potential of the existing as well as newly developed non-wetting interface materials for the fabrication of high-performance inverted perovskite solar cells.展开更多
Objective: To study the expression of RUNX3 in colorectal adenocarcinoma tissues and its correlation with microvessel density(MVD),and investigate the clinical pathological prognostic significance of RUNX3 and MVD in ...Objective: To study the expression of RUNX3 in colorectal adenocarcinoma tissues and its correlation with microvessel density(MVD),and investigate the clinical pathological prognostic significance of RUNX3 and MVD in patients with colorectal cancer,Methods: The expression value of RUNX3 and MVD in 70 specimens' colorectal adenocarcinoma tissues were detected by immunohistochemistry staining technique,The correlation between their expression and the clinicopathologic features was also investigated,Results: The expression value of RUNX3 and the positive rates of RUNX3 in colorectal adenocarcinoma tissues were 3.25±1.14 and 25.71%(18/70),The expression value of MVD in colorectal adenocarcinoma tissues was 13.14±3.23,Expression of RUNX3 and MVD value were correlated with CEA,serosal invasion,liver metastasis,lymph node metastasis,and TNM stage(P<0.01),The expression value of RUNX3 had negative correlations with that of MVD,Conclusions: The high expression of RUNX3 could inhibit tumor microvascular generation in order to have negative control response on invasion and distant metastasis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82201621(to LS),31930048(to QY)and 81720108016(to QY),and 81971225(to CG)the Key Research and Development Project of Shaanxi Province,No.2022SF-189(to XS)the Tangdu Hospital Supporting Foundation,Nos.2021ZTXM-006(to LS)and 2021JSZH-006(to CG)。
文摘Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury.Autologous mitochondrial transplantation is also beneficial in pediatric patients with cardiac ischemia-reperfusion injury.Thus,transplantation of functional exogenous mitochondria may be a promising therapeutic approach for ischemic disease.To explore the neuroprotective effect of mitochondria transplantation and determine the underlying mechanism in ischemic stroke,in this study we established a photo-thrombosis-induced mouse model of focal ischemia and administered freshly isolated mitochondria via the tail vein or to the injury site(in situ).Animal behavior tests,immunofluorescence staining,2,3,5-triphenyltetrazolium chloride(TTC)staining,mRNA-seq,and western blotting were used to assess mouse anxiety and memory,cortical infarct area,pyroptosis,and neurogenesis,respectively.Using bioinformatics analysis,western blotting,co-immunoprecipitation,and mass spectroscopy,we identified S100 calcium binding protein A9(S100A9)as a potential regulator of mitochondrial function and determined its possible interacting proteins.Interactions between exogenous and endogenous mitochondria,as well as the effect of exogenous mitochondria on recipient microglia,were assessed in vitro.Our data showed that:(1)mitochondrial transplantation markedly reduced mortality and improved emotional and cognitive function,as well as reducing infarct area,inhibiting pyroptosis,and promoting cortical neurogenesis;(2)microglial expression of S100A9 was markedly increased by ischemic injury and regulated mitochondrial function;(3)in vitro,exogenous mitochondria enhanced mitochondrial function,reduced redox stress,and regulated microglial polarization and pyroptosis by fusing with endogenous mitochondria;and(4)S100A9 promoted internalization of exogenous mitochondria by the microglia,thereby amplifying their pro-proliferation and anti-inflammatory effects.Taken together,our findings show that mitochondrial transplantation protects against the deleterious effects of ischemic stroke by suppressing pyroptosis and promoting neurogenesis,and that S100A9 plays a vital role in promoting internalization of exogenous mitochondria.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000600)the National Natural Science Foundation of China(Grant No.32070376)。
文摘In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.
文摘BACKGROUND The mucosal barrier's immune-brain interactions,pivotal for neural development and function,are increasingly recognized for their potential causal and therapeutic relevance to irritable bowel syndrome(IBS).Prior studies linking immune inflammation with IBS have been inconsistent.To further elucidate this relationship,we conducted a Mendelian randomization(MR)analysis of 731 immune cell markers to dissect the influence of various immune phenotypes on IBS.Our goal was to deepen our understanding of the disrupted brain-gut axis in IBS and to identify novel therapeutic targets.AIM To leverage publicly available data to perform MR analysis on 731 immune cell markers and explore their impact on IBS.We aimed to uncover immunophenotypic associations with IBS that could inform future drug development and therapeutic strategies.METHODS We performed a comprehensive two-sample MR analysis to evaluate the causal relationship between immune cell markers and IBS.By utilizing genetic data from public databases,we examined the causal associations between 731 immune cell markers,encompassing median fluorescence intensity,relative cell abundance,absolute cell count,and morphological parameters,with IBS susceptibility.Sensitivity analyses were conducted to validate our findings and address potential heterogeneity and pleiotropy.RESULTS Bidirectional false discovery rate correction indicated no significant influence of IBS on immunophenotypes.However,our analysis revealed a causal impact of IBS on 30 out of 731 immune phenotypes(P<0.05).Nine immune phenotypes demonstrated a protective effect against IBS[inverse variance weighting(IVW)<0.05,odd ratio(OR)<1],while 21 others were associated with an increased risk of IBS onset(IVW≥0.05,OR≥1).CONCLUSION Our findings underscore a substantial genetic correlation between immune cell phenotypes and IBS,providing valuable insights into the pathophysiology of the condition.These results pave the way for the development of more precise biomarkers and targeted therapies for IBS.Furthermore,this research enriches our comprehension of immune cell roles in IBS pathogenesis,offering a foundation for more effective,personalized treatment approaches.These advancements hold promise for improving IBS patient quality of life and reducing the disease burden on individuals and their families.
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金supported by Research Program of Chongqing Municipal Education Commission(KJQN201901127)University Innovation Research Group of Chongqing(CXQT20023)+2 种基金Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0184)support by the Research Program of Chongqing Municipal Education Commission(KJQN202201151)National Natural Science Foundation of China(52201107).
文摘LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.
基金supported by the National Key Research and Development Program of China(2019YFE0114400)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120005)+7 种基金the National Natural Science Foundation of China(32171721)the Guangdong Basic and Applied Basic Research Foundation(2021B151512000)the Guangzhou Science and Technology Plan Project(202102020262)the State Key Laboratory of Pulp&Paper Engineering(2022C01),the State Key Laboratory of Pulp&Paper Engineering(202208)the Engineering and Physical Sciences Research Council(EPSRCEP/V027433/1EP/V027433/2EP/Y008707/1)。
文摘Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on the anode.Despite numerous strategies to alleviate these side reactions have been demonstrated,they can only provide limited performance improvement from a single aspect.Herein,a triple-functional additive with trace amounts,ammonium hydroxide,was demonstrated to comprehensively protect zinc anodes.The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes.Moreover,cationic NH^(4+)can preferentially adsorb on the Zn anode surface to shield the“tip effect”and homogenize the electric field.Benefitting from this comprehensive protection,dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized.Besides,improved electrochemical performances can also be achieved in Zn//MnO_(2)full cells by taking the advantages of this triple-functional additive.This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.
基金F.Guo thanks for the support of Chongqing Research Program of Basic Research and Frontier Technology Scientific Research(cstc2019jcyj-msxmX0111)University Innovation Research Group of Chongqing(CXQT20023)+1 种基金Scientific Research Foundation of Chongqing University of Technology(2017ZD35)L.Y.Jiang is sponsored by Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201901127).
文摘Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plasticity simulation was utilized to illustrate the influence of slip activity on rolling texture development.The results show that the rolling texture is largely depended on deformation temperature.Unlike commercial Mg alloys,the critical resolved shear stress of basal slip inα-Mg phase of Mg-Li alloy decreased more significantly by increasing temperature compared to that of pyramidal<c+a>slip.Enhancement of basal slip by increasing temperature triggered a decrease of split angle of basal poles for the double-peak texture.Prismaticslip largely enhanced by increasing temperature upon 200℃,which induced a wider orientation spread along the transverse direction.For theβ-Li phase,the promotion of{110}<111>slip system at elevated temperature triggered the enhancement of{211}<110>and{111}<211>texture components.The cryo-rolled sample exhibited the highest strength compared to the others due to a strong hardening behavior at this temperature.A two-stage hardening behavior was observed in these as-rolled dual-phase alloys.Strain transition at phase boundaries could be the reason for appearance of this two-stage hardening.
基金Supported by National Key R&D Program of China(Grant No.2019YFB1505301)National Natural Science Foundation of China(Grant No.U1937602)+1 种基金Aeronautical Science Foundation of China(Grant No.201907058001)Open Research Fund of State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2019KF013).
文摘In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.
基金gratefully acknowledge Chongqing Talent Plan: Leading Talents in Innovation and Entrepreneurship (CQYC201903051)University Innovation Research Group of Chongqing (CXQT20023)Natural Science Foundation of Chongqing (cstc2021ycjh-bgzxm0184)。
文摘It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li alloys has not been fully understood. Firstly, the air-formed films formed on α and β phases in a dual-phase LZ91 Mg-Li alloy after exposure to laboratory air for up to 48 h have been examined by SEM under the assistance of ultramicrotomy. Then, the effect of the air-formed film on surface potential and, consequently, corrosion/oxidation behavior of the alloy has been investigated. Finally, in order to exclude the influence from α phase, the structure of the air-formed film on β phase and its effect on corrosion/oxidation behavior of Mg-Li alloys have been studied based on a single-phase LA141 Mg-Li alloy. The results show that the air-formed film is thin and negligible on α phase but thick on β phase after prolonged exposure to laboratory air. The thick air-formed film on β phase has a multilayer structure with an inner layer consisting of Mg O/Mg(OH)_(2) and outer layer consisting of Li_(2)CO_(3), which greatly elevates the surface potential of β phase in air. Both LZ91 and LA141 Mg-Li alloys firstly undergo uniform corrosion and then filiform corrosion when immersed in Na Cl solution and the pre-existed air-formed film on β-Li phase can retard the occurrence of filiform corrosion in the alloys.
基金Supported by National Natural Science Foundation of China(Grant No.61773060).
文摘Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.
基金jointly supported by the National Key Research and Development Program of China (Grant No. 2021YFD1000401)the National Natural Science Foundation of China (Grant No.32070376)+1 种基金the Program of Horticultural Crop Germplasm Resources in Hubei Province (Grant No. 2021DFE016)the Key Technology of Safety Production to Improve Tea Quality and Efficiency in Three Gorges Reservoir Area。
文摘Many attentions have been previously focused to identify the multiple biochemical components related to tea quality and health benefits,however, the natural variation of biochemical components present in tea germplasm has not been adequately evaluated. In this study, the main biochemical components, leaf morphological and yield characteristics were evaluated for four rounds of tea leaves in a panel of 87 elite tea cultivars suitable for black, green, or oolong tea. Significant variations were observed among the tea cultivars, as well as seasonal differences in the levels of the free amino acid(FAA), caffeine(CAF), tea polyphenols(TP), water extract(WE) and TP to FAA ratio(TP/FAA). Results showed that the average levels of FAA showed a seasonal change, with the highest level of 4.0% in the 1st spring tea in the cultivars suitable for green tea and the lowest of 3.2% in summer tea in the cultivars suitable for black tea. The average CAF content was highest 3.2% in the cultivars suitable for oolong tea in the 1st spring and the lowest 2.5% in the cultivars suitable for green tea in summer. Limited seasonal and varietal variations were noticed in the average levels of WE among the three categories of tea. In addition, significant natural variation of the morphological characteristics, bud length varying from 2.5 cm to 8.7 cm, bud density from 190.3 buds · m-2to 1 730.3 buds · m-2, mature leaves biomass from 128.4 kg · hm-2to 2 888.4 kg · hm-2, and yield component traits of 100 buds(one bud with two leaves) dry weight from 3.7 g to37.7 g, tea yield/round from 444.6 kg · hm-2to 905.3 kg · hm-2, were observed. The aim of our evaluation was not only to identify the advantages of seasonal and clonal variations but also to provide a new viewpoint for their further application. Representative accessions were selected from the germplasm to promote the establishment of an inherent biochemical constituent expressing the quality of black, green, and oolong tea. The findings might be utilized to establish early selection criteria to enhance the tea breeding and production program.
基金Supported by Technical Innovation Team Project of Collaborative Observation and Multi-source Live Data Fusion Analysis of Guangdong Meteorological Bu-reau(GRMCTD202103)R&D Plan Projects of Key Fields in Guangdong Province(2020B1111200001).
文摘A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The station density and observation frequency are encrypted to obtain observation data with higher spatial and temporal resolution.The original message with fixed element data location is the data combination of all observation elements and the maximum observation gradient of each element,which not only has higher invalid data redundancy,but also restricts the efficiency of data collection and processing,and also increases communication costs.An adaptive coding design method for the original message of automatic weather station is proposed.The embedded software coding algorithm of the weather station collector is optimized according to"plug and output"to realize intelligent networking,intelligent identification of observation elements and gradients,and dynamic flexible output of messages with variable length.The intelligent networking and business application of nearly 4000 automatic weather stations across the province show that the networking data acquisition and processing are efficient and stable.
基金Supported by Guangxi Forestry Science and Technology Promotion Demonstration Project(GUILINKEYAN[2021]23).
文摘In view of the problems of decreased unit yield,soil acidification,decreased soil organic matter and soil fertility caused by high generation single pure Eucalyptus plantation in southern Guangxi,a field experiment was conducted to study the yield,soil organic matter and soil fertility under six soil conditioning measures[interplanting Tephrosia candida under the forest,interplanting Sesbania cannabina under the forest,organic fertilizer application,residue to woodland,soil testing and formulated fertilization,and applying pure chemical fertilizer(CK)],and the enhancing effects of each treatment on the yield and soil improvement of Eucalyptus plantations were further comprehensively evaluated.The results showed that compared with the control,the five treatments could increase the average stock of Eucalyptus,among which the average stock under the treatment of interplanting T.candida under the forest was the highest,followed by soil testing and formulated fertilization.The soil organic matter content and soil fertility of the forest were significantly improved by interplanting green manure,organic fertilizer application and soil testing and formulated fertilization models,while the short-term(1 a)effect of the residue treatment on the improvement of soil organic matter and soil fertility was insignificant.During the actual production process,interplanting green manure and residue treatment were not effective due to the inoperability,and the applicability were not wide,which still needed further study.Therefore,organic manure application and soil testing and formulated fertilization were suitable choices to promote the improvement of productivity and soil quality of Eucalyptus plantation in Guangxi.
基金supported by the U.S. National Institutes of Health grants (U24 CA143835 to IS and WZ, P50 CA083639 and P50 CA098258 to AKS)MD Anderson support grant (CA016672) to WZ+6 种基金a grant from the Blanton-Davis Ovarian Cancer Research Program to WZgrants from the Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) in Chinathe National Key Scientifi c and Technological Project (2011ZX0 9307-001-04)Tianjin Science and Technology Committee Foundation (09ZCZDSF04700) to KCa grant from National Nature Science Foundation of China (#81201651) to YSa grant from Fondazione CARIPLO (2013-0865) to DMthe A. Lavoy Moore Endowment Fund to YS and DY
文摘Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition(EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas(TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This "paradox" can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating m RNA and micro RNA(mi RNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major mi RNAs and 214 m RNAs. Among the 8 mi RNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 mi RNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.
基金The authors appreciate the financial support provided by the Natural Science Foundation of China(No.41807294)This study was also financially supported by China Geological Survey Project(Nos.DD20190716 and 0001212020CC60002)。
文摘Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.
基金financially supported by the projects of the China Geological Survey(DD20190518,DD20190527)。
文摘To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,South China.The contents of Se in soils derived from granitoid and basalt are,respectively,0.19±0.12 mg/kg and 0.34±0.39 mg/kg,which are much higher than Se contents in granitoid and basalt.Selenium shows remarkable enrichment from granitoid and basalt to soils.The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg,which is significantly higher than that of basalt(0.0058±0.0039 mg/kg).Although soil derived from basalt shows higher Se contents,Se contents in rice samples,mobile fractions of Se in soils,and biological concentration factor(BCF)is similar or even lower than that from granitoid.Basalt consist of calcic plagioclase and pyroxene,and are much richer in Fe,Al,and Ca than granitoid.Correspondingly,the basalt-derived soils have higher goethite,hematite,kaolinite,cation exchange capacity(CEC)content,and higher p H than the granitoid-derived soils,which result in higher adsorption capacity for Se and relatively lower Se bioavailability.Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice.
基金supported by grants from the National Natural Science Foundation of China (Grant No.81572568 and 81272863)
文摘Sex-determining region Y box-containing genes are transcription factors with roles in multiple biological processes, including cell differentiation, proliferation, and apoptosis.Sex-determining region Y box-containing genes have also been shown to act as regulators and biomarkers in the progression of many different cancers, including gynecological cancers such as ovarian, cervical,and endometrial cancer.In this review, we summarize the contrasting regulatory roles of Sex-determining region Y box-containing genes in different gynecological cancers, as promotors with high expression levels or as suppressors with low expression levels.Expression levels of Sex-determining region Y box-containing genes were also identified as biomarkers of clinical features, including International Federation of Gynecology and Obstetrics stage, histopathologic grade together with disease-free survival, and treatment efficacy in patients with gynecological cancers.An understanding of the mechanisms whereby Sex-determining region Y box-containing genes regulate the progression of gynecological cancers will aid in the development of novel diagnostic and therapeutic strategies, while analysis of Sex-determining region Y box-containing expression levels will help to predict the prognosis of patients with gynecological cancers.
基金Supported by the Natural Science Foundation of Zhejiang Province(LY15B060006)the National Natural Science Foundation of China(21104066)the Zhejiang Province Public Technology Research and Industrial Grant(2012C21078)
文摘Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.
基金supported by the National Natural Science Foundation of China (Grant no. 61705090)
文摘Conjugated polymers are commonly used as effective hole transport materials(HTMs) for preparation of high-performance perovskite solar cells. However, the hydrophobic nature of these materials renders it difficult to deposit photovoltaic perovskite layers on top via solution processing. In this article, we report a generic surface modification strategy that enables the deposition of uniform and dense perovskite films on top of non-wetting interfaces. In contrast to the previous proposed chemical modifications which might alter the optoelectronic properties of the interfacial layers, we realized a nondestructive surface modification enabled by introducing a layer of insulating mesoporous aluminum oxide(Al2O3). The surface energies of the typical non-wetting hole-transport layers(PTAA, P3 HT, and Poly-TPD) were significantly reduced by the Al2O3 modification. Benefiting from the intact optoelectronic properties of the HTMs, perovskite solar cells deposited on these interface materials show full open-circuit voltages( V OC) with high fill factors(FF) up to 80%. Our method provides an effective avenue for exploiting the full potential of the existing as well as newly developed non-wetting interface materials for the fabrication of high-performance inverted perovskite solar cells.
基金supported by 2015 Support Project of Science and Technology(152777237)by 2015 Medical Research Project of Health Commission(20150058)by 2013 Mandatory Planning Project of Scientific and Technological Bureau of Zhangjiakou City(1311055D-1)
文摘Objective: To study the expression of RUNX3 in colorectal adenocarcinoma tissues and its correlation with microvessel density(MVD),and investigate the clinical pathological prognostic significance of RUNX3 and MVD in patients with colorectal cancer,Methods: The expression value of RUNX3 and MVD in 70 specimens' colorectal adenocarcinoma tissues were detected by immunohistochemistry staining technique,The correlation between their expression and the clinicopathologic features was also investigated,Results: The expression value of RUNX3 and the positive rates of RUNX3 in colorectal adenocarcinoma tissues were 3.25±1.14 and 25.71%(18/70),The expression value of MVD in colorectal adenocarcinoma tissues was 13.14±3.23,Expression of RUNX3 and MVD value were correlated with CEA,serosal invasion,liver metastasis,lymph node metastasis,and TNM stage(P<0.01),The expression value of RUNX3 had negative correlations with that of MVD,Conclusions: The high expression of RUNX3 could inhibit tumor microvascular generation in order to have negative control response on invasion and distant metastasis.