Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the pr...Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
We study the interfacial Dzyaloshinskii-Moriya interactions(i-DMI)of Fe/Pt bilayers grown on Si substrates with MgO,SiO_(2),or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering(...We study the interfacial Dzyaloshinskii-Moriya interactions(i-DMI)of Fe/Pt bilayers grown on Si substrates with MgO,SiO_(2),or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering(BLS)measurement.The obtained i-DMI energy values for Fe/Pt on MgO,Ta,and SiO_(2) buffer layers are 0.359,0.321,and 0.274 mJ/m~2,respectively.The large i-DMI value observed in Fe/Pt system on the MgO buffer layer can be attributed to the good interfacial quality and the Rshaba effect at the MgO/Fe interface.Moreover,the MgO/Fe/Pt system,benefiting from better sample quality,exhibits a lower damping factor.Furthermore,layer-resolved first-principles calculations are carried out to gain a more in-depth understanding of the origin of the i-DMI in the Fe/Pt system.The results indicate that in the Fe(110)/Pt(111)system,the substantial DMI energy between Fe spins at the interface is related to a significant change in spin-orbit coupling(SOC)energy in the neighboring Pt layer.In contrast,for the MgO(002)/Fe(002)system,both the DMI and its related SOC energy are concentrated at the interfacial Fe layer.Our investigation will provide a valuable insight into the spintronic community in exploring novel devices with chirality dependence.展开更多
Due to the rise in our aging population,a disproportionate demand for total joint arthroplasty(TJA)in the elderly is forecast.Periprosthetic joint infection(PJI)represents one of the most challenging complications tha...Due to the rise in our aging population,a disproportionate demand for total joint arthroplasty(TJA)in the elderly is forecast.Periprosthetic joint infection(PJI)represents one of the most challenging complications that can occur following TJA,and as the number of primary and revision TJAs continues to rise,an increasing PJI burden is projected.Despite advances in operating room sterility,antiseptic protocols,and surgical techniques,approaches to prevent and treat PJI remain difficult,primarily due to the formation of microbial biofilms.This difficulty motivates researchers to continue searching for an effective antimicrobial strategy.The dextrorotatory-isoforms of amino acids(D-AAs)are essential components of peptidoglycan within the bacterial cell wall,providing strength and structural integrity in a diverse range of species.Among many tasks,D-AAs regulate cell morphology,spore germination,and bacterial survival,evasion,subversion,and adhesion in the host immune system.When administered exogenously,accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation;furthermore,D-AAs have substantial efficacy in promoting biofilm disassembly.This presents D-AAs as promising and novel targets for future therapeutic approaches.Despite their emerging antibacterial efficacy,their role in disrupting PJI biofilm formation,the disassembly of established TJA biofilm,and the host bone tissue response remains largely unexplored.This review aims to examine the role of D-AAs in the context of TJAs.Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.展开更多
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B222)the China Agriculture Research System(CARS-15-06)the Key R&D Project of Eight Division of Xinjiang Production and Construction Corps,China(2021NY01)。
文摘Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金Project supported by the National Basic Research Program of China (Grant Nos.12074220,12304151,12204355,and 12204356)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2022QA085)。
文摘We study the interfacial Dzyaloshinskii-Moriya interactions(i-DMI)of Fe/Pt bilayers grown on Si substrates with MgO,SiO_(2),or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering(BLS)measurement.The obtained i-DMI energy values for Fe/Pt on MgO,Ta,and SiO_(2) buffer layers are 0.359,0.321,and 0.274 mJ/m~2,respectively.The large i-DMI value observed in Fe/Pt system on the MgO buffer layer can be attributed to the good interfacial quality and the Rshaba effect at the MgO/Fe interface.Moreover,the MgO/Fe/Pt system,benefiting from better sample quality,exhibits a lower damping factor.Furthermore,layer-resolved first-principles calculations are carried out to gain a more in-depth understanding of the origin of the i-DMI in the Fe/Pt system.The results indicate that in the Fe(110)/Pt(111)system,the substantial DMI energy between Fe spins at the interface is related to a significant change in spin-orbit coupling(SOC)energy in the neighboring Pt layer.In contrast,for the MgO(002)/Fe(002)system,both the DMI and its related SOC energy are concentrated at the interfacial Fe layer.Our investigation will provide a valuable insight into the spintronic community in exploring novel devices with chirality dependence.
基金supported by the National Aeronautics and Space Administration[grant No.80NSSC21M0309]issued through the NASA Office of STEM Engagement。
文摘Due to the rise in our aging population,a disproportionate demand for total joint arthroplasty(TJA)in the elderly is forecast.Periprosthetic joint infection(PJI)represents one of the most challenging complications that can occur following TJA,and as the number of primary and revision TJAs continues to rise,an increasing PJI burden is projected.Despite advances in operating room sterility,antiseptic protocols,and surgical techniques,approaches to prevent and treat PJI remain difficult,primarily due to the formation of microbial biofilms.This difficulty motivates researchers to continue searching for an effective antimicrobial strategy.The dextrorotatory-isoforms of amino acids(D-AAs)are essential components of peptidoglycan within the bacterial cell wall,providing strength and structural integrity in a diverse range of species.Among many tasks,D-AAs regulate cell morphology,spore germination,and bacterial survival,evasion,subversion,and adhesion in the host immune system.When administered exogenously,accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation;furthermore,D-AAs have substantial efficacy in promoting biofilm disassembly.This presents D-AAs as promising and novel targets for future therapeutic approaches.Despite their emerging antibacterial efficacy,their role in disrupting PJI biofilm formation,the disassembly of established TJA biofilm,and the host bone tissue response remains largely unexplored.This review aims to examine the role of D-AAs in the context of TJAs.Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.