This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.