In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ...A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.展开更多
Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of lo...Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal.展开更多
Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated....Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.展开更多
Cerebral ventricular infection (CVI) is one of the most dangerous complications in neurosurgery because of its high mortality and disability rates. Few studies have examined the application of neuroendoscopic surgical...Cerebral ventricular infection (CVI) is one of the most dangerous complications in neurosurgery because of its high mortality and disability rates. Few studies have examined the application of neuroendoscopic surgical techniques (NESTs) to assess and treat CVI. This multicenter, retrospective study was conducted using clinical data of 32 patients with CVI who were assessed and treated by NESTs in China. The patients included 20 men and 12 women with a mean age of 42.97 years. NESTs were used to obliterate intraventricular debris and pus, fenestrate or incise the intraventricular compartment and reconstruct cerebrospinal fluid circulation, and remove artificial material. Intraventricular irrigation with antibiotic saline was applied after neuroendoscopic surgery (NES). Secondary hydrocephalus was treated by endoscopic third ventriculostomy or a ventriculoperitoneal shunt. Neuroendoscopic findings of CVI were used to classify patients into Grade Ⅰ(n = 3), Grade Ⅱ(n = 13), Grade Ⅲ(n = 10), and Grade Ⅳ(n = 6) CVI. The three patients with grade ⅠCVI underwent one NES, the 23 patients with grade Ⅱ/Ⅲ CVI underwent two NESs, and patients with grade Ⅳ CVI underwent two (n = 3) or three (n = 3) NESs. The imaging features and grades of neuroendoscopy results were positively related to the number of neurosurgical endoscopic procedures. Two patients died of multiple organ failure and the other 30 patients fully recovered. Among the 26 patients with secondary hydrocephalus, 18 received ventriculoperitoneal shunt and 8 underwent endoscopic third ventriculostomy. There were no recurrences of CVI during the 6- to 76-month follow-up after NES. Application of NESTs is an innovative method to assess and treat CVI, and its neuroendoscopic classification provides an objective, comprehensive assessment of CVI. The study trial was approved by the Institutional Review Board of Beijing Shijitan Hospital, Capital Medical University, China.展开更多
In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound c...In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.展开更多
In this work,a vibration was applied in the preparation of the Mg/Al bimetal by a novel compound casting in order to improve the mechanical properties of the Mg/Al bimetal,and the effect of the vibration on the interf...In this work,a vibration was applied in the preparation of the Mg/Al bimetal by a novel compound casting in order to improve the mechanical properties of the Mg/Al bimetal,and the effect of the vibration on the interfacial microstructure and mechanical properties of the Mg/Al bimetal was investigated.The results indicated that the vibration had a significant effect on the interfacial microstructure and mechanical properties of the Mg/Al bimetal,but it did not change the phase compositions of the interface,which was composed of layerⅠ(Al3Mg2+Mg2Si),layerⅡ(Al_(12)Mg_(17)+Mg_(2)Si)and layerⅢ(Al_(12)Mg_(17)/δ-Mg).Without vibration,the Mg_(2)Si phase with a needle-like morphology mainly aggregated in the layerⅡof the interface.After the application of the vibration,the SEM and EBSD analysis results showed that the Mg_(2)Si and Al3Mg2phases in the interface were obviously refined,and the distribution of the Mg_(2)Si became more uniform,due to the strong forced convection of the molten metal resulting from the vibration.The TEM analysis indicated that the interface between the A_(l3)Mg_(2) and Mg_(2)Si phases was non-coherent,suggesting the Mg_(2)Si particles cannot act as a heterogeneous nucleation base during the solidification process of the interface.Compared to the Mg/Al bimetal without vibration,the shear strength of the Mg/Al bimetal with vibration increased by about 50%from 31.7 MPa on average to 47.5 MPa,and the hardness of the layer I of the interface increased,and the hardness of the layerⅢdecreased.The fracture surface transformed from a flat fracture morphology without vibration to an irregular zigzag fracture morphology.展开更多
The duration of vehicle fire incidents has been closely associated with incidents loss. Understanding the influential priority of factors is significant to take targeted countermeasures for the managements. Based on t...The duration of vehicle fire incidents has been closely associated with incidents loss. Understanding the influential priority of factors is significant to take targeted countermeasures for the managements. Based on the database from WSDOT (Washington Department of Transportation) in USA, we analyze the probability distribution of the vehicle fire accidents' duration. Then we classify the influential factors into the first-grade factors including three categories: time, incident type, operation and the second-grade factors including eight categories: quarter, week and day time, etc. Then GILA (grey relational analysis) model is applied to calculate grey relational grades of the influential factors. The results show that the most important factor of the first-grade factors is incident type, vehicles involved and agencies involved are the major factors among the second-grade factors.展开更多
Surface-tension-confined microfluidic devices are platforms for manipulating 2D droplets based on patterned surfaces with special wettability.They have great potential for various applications,but are still in the ear...Surface-tension-confined microfluidic devices are platforms for manipulating 2D droplets based on patterned surfaces with special wettability.They have great potential for various applications,but are still in the early stages of development and face some challenges that need to be addressed.This study,inspired by the Wenzel and slippery transition of rose petal,develops a Patterned Oil-triggered Wenzel-slippery Surface(POWS)to examine the microfluidic devices.A laser-chemical composite method is established to fabricate POWSs,which take rose-petal-like microstructures as wettability pattern and a superamphiphobic surface as the background.The prepared POWSs switched between high adhesion superhydrophobic state and the slippery liquid-infused surface state through adding or removing the lubricant oil.In the high adhesion superhydrophobic state,the droplets can be sticked on the surface.In the slippery liquid-infused state,the droplet can slide along the wettability pattern as the designed route.A POWS-based droplet reactor is further constructed,on which,the droplets can be remotely controlled to move,mix and react,as required.Such a POWS,which manipulates droplets with surface tension controlled by the switchable wettability patterns,would be a promising candidate to construct multiple surface-tension-confined microfluidic devices.In addition,the fabrication technique and design principle proposed here may aid the development of various field related to the bio-inspired surfaces,such as water collection,desalination and high throughput analysis,etc.展开更多
Chronic subdural hematoma (CSDH) is a common and frequently occurring disease in neurosurgery, whose incidence accounts for around 10% of all intracranial hematomas. There have been many theories about the mechanism o...Chronic subdural hematoma (CSDH) is a common and frequently occurring disease in neurosurgery, whose incidence accounts for around 10% of all intracranial hematomas. There have been many theories about the mechanism of CSDH, including acute subdural hematoma, slow hemorrhage after bridge vein injury, and traumatic subdural effusion evolution With improvements in medical imaging technology and related basic research, the perception of CSDH as an inflammatory vascular proliferative disease has gradually reached consensus In addition to head trauma, brain atrophy leading to expanded subdural space is the premise and primary reason for the occurrence of CSDH in the older adult population.展开更多
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Fund for Distinguished Young Scholars of Hunan Province of China(No.2023JJ10055)。
文摘A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.
基金the supports provided by the National Natural Science Foundation of China (Grant Nos.52271102,52075198 and 52205359)the China Post-doctoral Science Foundation (Grant No.2021M691112)the Analytical and Testing Center,HUST。
文摘Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal.
基金This work was funded by the National Natural Science Foundation of China(Nos.52075198,52271102 and 52205359)the China Postdoctoral Science Foundation(No.2021M691112).
文摘Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.
基金supported by the Capital Health Research and Development of Special Funding Support of China,No.2011-2008-06(to ZQH)Capital Characteristic Clinical Application Research of China,No.Z131107002213044(to ZQH)Beijing Municipal Administration of Hospitals Incubating Program of China,No.PX2019026(to FG)
文摘Cerebral ventricular infection (CVI) is one of the most dangerous complications in neurosurgery because of its high mortality and disability rates. Few studies have examined the application of neuroendoscopic surgical techniques (NESTs) to assess and treat CVI. This multicenter, retrospective study was conducted using clinical data of 32 patients with CVI who were assessed and treated by NESTs in China. The patients included 20 men and 12 women with a mean age of 42.97 years. NESTs were used to obliterate intraventricular debris and pus, fenestrate or incise the intraventricular compartment and reconstruct cerebrospinal fluid circulation, and remove artificial material. Intraventricular irrigation with antibiotic saline was applied after neuroendoscopic surgery (NES). Secondary hydrocephalus was treated by endoscopic third ventriculostomy or a ventriculoperitoneal shunt. Neuroendoscopic findings of CVI were used to classify patients into Grade Ⅰ(n = 3), Grade Ⅱ(n = 13), Grade Ⅲ(n = 10), and Grade Ⅳ(n = 6) CVI. The three patients with grade ⅠCVI underwent one NES, the 23 patients with grade Ⅱ/Ⅲ CVI underwent two NESs, and patients with grade Ⅳ CVI underwent two (n = 3) or three (n = 3) NESs. The imaging features and grades of neuroendoscopy results were positively related to the number of neurosurgical endoscopic procedures. Two patients died of multiple organ failure and the other 30 patients fully recovered. Among the 26 patients with secondary hydrocephalus, 18 received ventriculoperitoneal shunt and 8 underwent endoscopic third ventriculostomy. There were no recurrences of CVI during the 6- to 76-month follow-up after NES. Application of NESTs is an innovative method to assess and treat CVI, and its neuroendoscopic classification provides an objective, comprehensive assessment of CVI. The study trial was approved by the Institutional Review Board of Beijing Shijitan Hospital, Capital Medical University, China.
基金supports provided by the National Natural Science Foundation of China (No. 52075198)the National Key Research and Development Program of China (Nos. 2020YFB2008300 and 2020YFB2008304)+1 种基金the State Key Laboratory of High Performance Complex Manufacturing in CSU (No. Kfkt2019-01)the Analytical and Testing Center, HUST.
文摘In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.
基金the supports provided by the National Natural Science Foundation of China(No.52075198)the National Key Research and Development Program of China(Nos.2020YFB2008300,2020YFB2008304)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this work,a vibration was applied in the preparation of the Mg/Al bimetal by a novel compound casting in order to improve the mechanical properties of the Mg/Al bimetal,and the effect of the vibration on the interfacial microstructure and mechanical properties of the Mg/Al bimetal was investigated.The results indicated that the vibration had a significant effect on the interfacial microstructure and mechanical properties of the Mg/Al bimetal,but it did not change the phase compositions of the interface,which was composed of layerⅠ(Al3Mg2+Mg2Si),layerⅡ(Al_(12)Mg_(17)+Mg_(2)Si)and layerⅢ(Al_(12)Mg_(17)/δ-Mg).Without vibration,the Mg_(2)Si phase with a needle-like morphology mainly aggregated in the layerⅡof the interface.After the application of the vibration,the SEM and EBSD analysis results showed that the Mg_(2)Si and Al3Mg2phases in the interface were obviously refined,and the distribution of the Mg_(2)Si became more uniform,due to the strong forced convection of the molten metal resulting from the vibration.The TEM analysis indicated that the interface between the A_(l3)Mg_(2) and Mg_(2)Si phases was non-coherent,suggesting the Mg_(2)Si particles cannot act as a heterogeneous nucleation base during the solidification process of the interface.Compared to the Mg/Al bimetal without vibration,the shear strength of the Mg/Al bimetal with vibration increased by about 50%from 31.7 MPa on average to 47.5 MPa,and the hardness of the layer I of the interface increased,and the hardness of the layerⅢdecreased.The fracture surface transformed from a flat fracture morphology without vibration to an irregular zigzag fracture morphology.
文摘The duration of vehicle fire incidents has been closely associated with incidents loss. Understanding the influential priority of factors is significant to take targeted countermeasures for the managements. Based on the database from WSDOT (Washington Department of Transportation) in USA, we analyze the probability distribution of the vehicle fire accidents' duration. Then we classify the influential factors into the first-grade factors including three categories: time, incident type, operation and the second-grade factors including eight categories: quarter, week and day time, etc. Then GILA (grey relational analysis) model is applied to calculate grey relational grades of the influential factors. The results show that the most important factor of the first-grade factors is incident type, vehicles involved and agencies involved are the major factors among the second-grade factors.
基金supported by Key Scientific and Technological Projects of Jilin Province(20220201026GX,20220401083YY)Fundamental Research Funds for the Central Universities,Jilin University(2022-JCXK-15).
文摘Surface-tension-confined microfluidic devices are platforms for manipulating 2D droplets based on patterned surfaces with special wettability.They have great potential for various applications,but are still in the early stages of development and face some challenges that need to be addressed.This study,inspired by the Wenzel and slippery transition of rose petal,develops a Patterned Oil-triggered Wenzel-slippery Surface(POWS)to examine the microfluidic devices.A laser-chemical composite method is established to fabricate POWSs,which take rose-petal-like microstructures as wettability pattern and a superamphiphobic surface as the background.The prepared POWSs switched between high adhesion superhydrophobic state and the slippery liquid-infused surface state through adding or removing the lubricant oil.In the high adhesion superhydrophobic state,the droplets can be sticked on the surface.In the slippery liquid-infused state,the droplet can slide along the wettability pattern as the designed route.A POWS-based droplet reactor is further constructed,on which,the droplets can be remotely controlled to move,mix and react,as required.Such a POWS,which manipulates droplets with surface tension controlled by the switchable wettability patterns,would be a promising candidate to construct multiple surface-tension-confined microfluidic devices.In addition,the fabrication technique and design principle proposed here may aid the development of various field related to the bio-inspired surfaces,such as water collection,desalination and high throughput analysis,etc.
文摘Chronic subdural hematoma (CSDH) is a common and frequently occurring disease in neurosurgery, whose incidence accounts for around 10% of all intracranial hematomas. There have been many theories about the mechanism of CSDH, including acute subdural hematoma, slow hemorrhage after bridge vein injury, and traumatic subdural effusion evolution With improvements in medical imaging technology and related basic research, the perception of CSDH as an inflammatory vascular proliferative disease has gradually reached consensus In addition to head trauma, brain atrophy leading to expanded subdural space is the premise and primary reason for the occurrence of CSDH in the older adult population.