X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetrat...X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.展开更多
The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X...The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.展开更多
OBJECTIVE To evalu ate the role of resting magnetocardiography in identifying seve re coronary artery stenosis in patients with suspected coronary artery disease.METHODS A total of 513 patients with angina symptoms we...OBJECTIVE To evalu ate the role of resting magnetocardiography in identifying seve re coronary artery stenosis in patients with suspected coronary artery disease.METHODS A total of 513 patients with angina symptoms were included and divided into two groups based on the extent of coronary artery disease determined by angiography:the non-severe coronary stenusis group(<70% stenosis) and the severe coronary stenosis group(≥70% stenosis).The diagnostic model was constructed using magnetic field map(MFM) parameters,either individually or in combination with clinical indicators.The performance of the models was evaluated using receiver operating characteristic curves,accuracy,sensitivity,specificity,positive predictive value(PPV) and ne gative predictive value(NPV).Calibration plots and decision curve analysis were performed to investigate the clinical utility and performance of the models,respectively.RESULTS In the severe coronary stenosis group,QR_MCTDd,S_MDp,and TT_(MA)C_(50) were significantly higher than those in the non-severe coronary stenosis group(10,46±10.66 vs,5.11±6.07,P <0.001;7.2±8.64 vs.4.68±6.95,P=0.003;0.32±57.29 vs.0.26±57.29,P <0.001).While,QR_MV_(amp),R_(MA),and T_(MA) in the severe coronary stenosis group were lower(0.23±0.16 vs.0.28±0.16,P<0.001;55.06±48.68 vs.59.24±53.01,P<0.001;51.67±39.32 vs. 60.45±51.33,P <0.001).Seven MFM parameters were integrated into the model,resulting in an area under the curve of 0.810(95% CI:0.765-0.855).The sensitivity,specificity,PPV,NPV,and accurecy were 71.7%,80.4%,93.3%,42.8 %,and 73.5%;respectevely.The combined model exhibited an area under the curve of 0.845(95% CI:0.798-0.892).The sensitivity,specificity,PPV,NPV,and accuracy were 84.3%,73.8%,92.6%,54.6%,and 82.1%;respectively.Calibration curves demonstrate d excellent agreement between the nomogram prediction and actual observation.The decision curve analysis showed that the c ombine d model provided greater net benefit compared to the magnetocardingraphy model.CONCLUSIONS The novel quantitative MFM parameters,whether used individually or in combination with clinical indicators,have been shown to effectively pre dict the risk of severe coronary stenosis in patients presenting with angina-like symptoms.Magnetocardiography,an emerging non-invasive diagnostic tool,warrants further exploration for its potential in diagnosing coronary heart disease.展开更多
As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey...As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey and related test, for Modflow system simulation platform, through to the boundary conditions, initial conditions and source sink term and related hydrogeological parameters, the model identification and verification, The model of hydrogeological parameters in the study area is constructed. The simulation results show that the groundwater depth near the reservoir area will be higher than the critical value (1.8 m) of secondary salinization of soil. At the same time, according to the investigation and experiment, if the reservoir does not do seepage treatment, the water infiltration in the reservoir will aggravate the environmental hydrogeological problems in the ecologically fragile area.展开更多
基金This work was supported by National Natural Science Foundation of China(No.12075304)Natural Science Foundation of Shanghai(No.22ZR1442100)National Key Research and Development Program of China(No.2022YFB3503904).
文摘X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.
基金This work was supported by the National Key R&D Program of China(No.2020YFA0405802)the Shanghai Large Scientific Facilities Center.
文摘The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.
基金supported by the National Key Research and Development Program (No.2022YFC2407001)。
文摘OBJECTIVE To evalu ate the role of resting magnetocardiography in identifying seve re coronary artery stenosis in patients with suspected coronary artery disease.METHODS A total of 513 patients with angina symptoms were included and divided into two groups based on the extent of coronary artery disease determined by angiography:the non-severe coronary stenusis group(<70% stenosis) and the severe coronary stenosis group(≥70% stenosis).The diagnostic model was constructed using magnetic field map(MFM) parameters,either individually or in combination with clinical indicators.The performance of the models was evaluated using receiver operating characteristic curves,accuracy,sensitivity,specificity,positive predictive value(PPV) and ne gative predictive value(NPV).Calibration plots and decision curve analysis were performed to investigate the clinical utility and performance of the models,respectively.RESULTS In the severe coronary stenosis group,QR_MCTDd,S_MDp,and TT_(MA)C_(50) were significantly higher than those in the non-severe coronary stenosis group(10,46±10.66 vs,5.11±6.07,P <0.001;7.2±8.64 vs.4.68±6.95,P=0.003;0.32±57.29 vs.0.26±57.29,P <0.001).While,QR_MV_(amp),R_(MA),and T_(MA) in the severe coronary stenosis group were lower(0.23±0.16 vs.0.28±0.16,P<0.001;55.06±48.68 vs.59.24±53.01,P<0.001;51.67±39.32 vs. 60.45±51.33,P <0.001).Seven MFM parameters were integrated into the model,resulting in an area under the curve of 0.810(95% CI:0.765-0.855).The sensitivity,specificity,PPV,NPV,and accurecy were 71.7%,80.4%,93.3%,42.8 %,and 73.5%;respectevely.The combined model exhibited an area under the curve of 0.845(95% CI:0.798-0.892).The sensitivity,specificity,PPV,NPV,and accuracy were 84.3%,73.8%,92.6%,54.6%,and 82.1%;respectively.Calibration curves demonstrate d excellent agreement between the nomogram prediction and actual observation.The decision curve analysis showed that the c ombine d model provided greater net benefit compared to the magnetocardingraphy model.CONCLUSIONS The novel quantitative MFM parameters,whether used individually or in combination with clinical indicators,have been shown to effectively pre dict the risk of severe coronary stenosis in patients presenting with angina-like symptoms.Magnetocardiography,an emerging non-invasive diagnostic tool,warrants further exploration for its potential in diagnosing coronary heart disease.
文摘As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey and related test, for Modflow system simulation platform, through to the boundary conditions, initial conditions and source sink term and related hydrogeological parameters, the model identification and verification, The model of hydrogeological parameters in the study area is constructed. The simulation results show that the groundwater depth near the reservoir area will be higher than the critical value (1.8 m) of secondary salinization of soil. At the same time, according to the investigation and experiment, if the reservoir does not do seepage treatment, the water infiltration in the reservoir will aggravate the environmental hydrogeological problems in the ecologically fragile area.