By using data of hourly rainfall with all of the meteorological stations in the upper reaches of Hunhe River (Qingyuan Section), the digital elevation model, the land use and the disasters data etc., the storm flood p...By using data of hourly rainfall with all of the meteorological stations in the upper reaches of Hunhe River (Qingyuan Section), the digital elevation model, the land use and the disasters data etc., the storm flood process which happened on 16 August 2013 is reproduced simulated based on the rainstorm flooding of FloodArea model, also the flooding simulation and its effectiveness have been carried out. Conclusions are drawn as follows: there is a sharp rise of the flood depth falling behind the change of rainfall three or four hours. As the accumulation of the precipitation, the water level has increased, and when the precipitation process stops, the flood pooled into midstream and downstream gradually. According to the disaster investigation, in both the aspects of flooding scope and flooding depth of warning spots, the simulation result of FloodArea model agrees with the fact. It indicates that the FloodArea model generates good simulation effect in the upper reaches of Hunhe River (Qingyuan Section). Combined with population and GDP information, in the whole river, about eighty-three thousand people were affected by flooding, also one billion and five hundred seventy five million RMB of gross domestic product was lost. When the flood depth deepens and the flooding scope increases, correspondingly the loss rate of population and GDP rises and the flood risk increases.展开更多
Based on the meteorological and geographic information data, with statistical method and the FloodArea model, the extreme daily rainfall of the 100-year return period in Hunhe River basin was established, through the ...Based on the meteorological and geographic information data, with statistical method and the FloodArea model, the extreme daily rainfall of the 100-year return period in Hunhe River basin was established, through the simulation of rainstorm and flood disaster, characteristics of flood depth in warning spot Cangshi village in the upstream of the river were analysed, and possible effect on community economy was also evaluated. Results showed that, the precipitation of 100-year return period occurred, the flood depth has been below 1.0 meter in the most areas of Hunhe River basin, the depth was between 1.0 meter and 2.5 meters in the part areas of Hunhe River basin, and the flood depth has been exceed 2.5 meters in a small part of Hunhe River basin. After the beginning of precipitation, the flood was concentrated in the upper reaches of the river. With the accumulation of precipitation and the passage of time, the flood pools into midstream and downstream. Precipitation lasted for 24 hours, the warning spot was flooded in the beginning of precipitation. With the accumulation of precipitation, water level of the river increases gradually. The depth of warning spot has passed 1.0 meter at the 07 time of the whole process, and the maximum value of flood depth at warning spot was 1.083 meters that occurred at the 19 time. The flood depth of warning spot decreased gradually after the precipitation stopping, and the depth has been below 0.2 meters, the flood of upstream ended. Up to the end of the upstream flood process, in the whole river, about one million five hundred and sixty thousand people were affected by flooding, and thirty-eight billion and two hundred million RMB of gross domestic product were lost, in addition, dry land and paddy field were affected greatly, but woodland and grassland were less affected.展开更多
文摘By using data of hourly rainfall with all of the meteorological stations in the upper reaches of Hunhe River (Qingyuan Section), the digital elevation model, the land use and the disasters data etc., the storm flood process which happened on 16 August 2013 is reproduced simulated based on the rainstorm flooding of FloodArea model, also the flooding simulation and its effectiveness have been carried out. Conclusions are drawn as follows: there is a sharp rise of the flood depth falling behind the change of rainfall three or four hours. As the accumulation of the precipitation, the water level has increased, and when the precipitation process stops, the flood pooled into midstream and downstream gradually. According to the disaster investigation, in both the aspects of flooding scope and flooding depth of warning spots, the simulation result of FloodArea model agrees with the fact. It indicates that the FloodArea model generates good simulation effect in the upper reaches of Hunhe River (Qingyuan Section). Combined with population and GDP information, in the whole river, about eighty-three thousand people were affected by flooding, also one billion and five hundred seventy five million RMB of gross domestic product was lost. When the flood depth deepens and the flooding scope increases, correspondingly the loss rate of population and GDP rises and the flood risk increases.
文摘Based on the meteorological and geographic information data, with statistical method and the FloodArea model, the extreme daily rainfall of the 100-year return period in Hunhe River basin was established, through the simulation of rainstorm and flood disaster, characteristics of flood depth in warning spot Cangshi village in the upstream of the river were analysed, and possible effect on community economy was also evaluated. Results showed that, the precipitation of 100-year return period occurred, the flood depth has been below 1.0 meter in the most areas of Hunhe River basin, the depth was between 1.0 meter and 2.5 meters in the part areas of Hunhe River basin, and the flood depth has been exceed 2.5 meters in a small part of Hunhe River basin. After the beginning of precipitation, the flood was concentrated in the upper reaches of the river. With the accumulation of precipitation and the passage of time, the flood pools into midstream and downstream. Precipitation lasted for 24 hours, the warning spot was flooded in the beginning of precipitation. With the accumulation of precipitation, water level of the river increases gradually. The depth of warning spot has passed 1.0 meter at the 07 time of the whole process, and the maximum value of flood depth at warning spot was 1.083 meters that occurred at the 19 time. The flood depth of warning spot decreased gradually after the precipitation stopping, and the depth has been below 0.2 meters, the flood of upstream ended. Up to the end of the upstream flood process, in the whole river, about one million five hundred and sixty thousand people were affected by flooding, and thirty-eight billion and two hundred million RMB of gross domestic product were lost, in addition, dry land and paddy field were affected greatly, but woodland and grassland were less affected.