期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:3
1
作者 Yongbiao Mu Shixiang yu +12 位作者 yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang fenghua yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究 被引量:19
2
作者 于丰华 许童羽 +3 位作者 郭忠辉 杜文 王定康 曹英丽 《智慧农业(中英文)》 2020年第1期77-86,共10页
水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影... 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影法、遗传算法优化的粗糙集属性简约法进行高光谱特征选择,提出了仅含有695、507和465nm 3个高光谱特征波段的红边优化指数(ORVI)。与Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括ND_(528,587)、SR_(440,690)、CARI、MCARI的反演结果进行了对比分析,结果表明:IDB数据库中的已有4种植被指数叶绿素含量反演模型的决定系数R^2分别为0.672、0.630、0.595和0.574;ORVI植被所建立的叶绿素含量反演模型的决定系数R^2为0.726,均方根误差RMSE为2.68,精度高于其他植被指数,说明了ORVI在实际的应用中,能够作为快速反演水稻叶绿素含量的高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定的客观数据支撑和模型参考。 展开更多
关键词 植被指数 叶绿素反演 水稻叶片 高光谱遥感 红边优化指数ORVI
下载PDF
Mechanism of Wumei Pill in the Treatment of Non-Erosive reflux disease from the Perspective of Network Pharmacology and Molecular docking
3
作者 Yihua Fan Tengda Li +3 位作者 Rui Gong Wen Zhang fenghua yu Xinju Li 《Asian Toxicology Research》 2021年第4期1-13,共13页
Objective:Based on network pharmacology and molecular docking to explore the mechanism of Wumei Pill in the treatment of non-erosive reflux disease(NERD).Method:We collected the active ingredients and targets of Wumei... Objective:Based on network pharmacology and molecular docking to explore the mechanism of Wumei Pill in the treatment of non-erosive reflux disease(NERD).Method:We collected the active ingredients and targets of Wumei Pill by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),and collected NERD related targets through Genecards,PharmGKB,Drugbank,DisGeNET,OMIM,CTD and TTD databases.Intersection targets of Wumei Pill targets and NERD related targets were the potential targets of Wumei Pill in the treatment of NERD.We imported the intersection targets into the STRING database to obtain the PPI network,and obtained the hub targets.The network diagram of"Drugs-Potential active ingredients-Potential targets"was constructed by Cytoscape 3.7.2 software.We used R software to perform Gene Ontology function enrichment analysis(GO)and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis(KEGG)on hub targets,and then performed molecular docking verification.Results:There were 129 active ingredients and 213 drug targets of Wumei Pill of which 114 were the intersection targets.1587 GO enrichment items were identified(P<0.05),including 1,491 biological processes,11 cell components,and 85 molecular functions.143 KEGG pathways(P<0.05),mainly related to Kaposi sarcoma-associated herpesvirus infection,IL-17 signaling pathway,the TNF signaling pathway,MAPK signaling pathway.Results of molecular docking showed that the potential active ingredients in Wumei Pill had relatively stable binding activity to the key targets.Conclusion:Wumei pill for the treatment of non-erosive reflux disease are main active ingredients quercetin,kaempferol,beta sitosterol,Isocorypalmine,Stigmasterol,rutaecarpine,etc,the main targets is JUN,TP53,AKT1,may inhibit excessive inflammation,antioxidant therapy effect into full play.This provided a certain theoretical basis for clinical application. 展开更多
关键词 Network Pharmacology Wumei Pill Non erosive acid reflux disease Go enrichment analysis KEGG Pathway Analysis Molecular docking
下载PDF
Effects of plant protection UAV-based spraying on the vertical distribution of droplet deposition on Japonica rice plants in Northeast China 被引量:2
4
作者 Yingli Cao fenghua yu +3 位作者 Tongyu Xu Wen Du Zhonghui Guo Haiyan Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第5期27-34,共8页
In order to study the regularity of the vertical distribution of droplet deposition on rice plants during pesticide spraying operated by a low-flying multi-rotor plant protection unmanned aviation vehicle(UAV),water-s... In order to study the regularity of the vertical distribution of droplet deposition on rice plants during pesticide spraying operated by a low-flying multi-rotor plant protection unmanned aviation vehicle(UAV),water-sensitive spray cards were placed on the leaves at the top,in the middle,and at the bottom of rice plants to acquire data on droplet deposition.In this study,a suspension containing tricylazole and hexaconazole was used in the spraying.The water-sensitive spray cards were analyzed by the droplet deposition processing software iDAS to obtain the vertical distribution of the droplets sprayed by the plant protection UAV.The results showed that (1)significant variation was found in the coverage of the droplets in different vertical positions of the rice plants.Within the effective spray width,the best coverage of the droplets was found in the area just below the rotors,whereas the coverage of areas farther away from the rotors was poor.For the different vertical positions of the rice plants,the overall droplet coverage was 58.38%at the top,33.55%in the middle,and 11.34%at the bottom of the plants;(2)for all vertical positions,the average size of the droplets ranged between 110μm and 140μm,which was suitable for the control of plant diseases and insect pests.The highest droplet density was found at the top of the plants,and the distribution of the droplet density was similar in the middle and at the bottom of the rice plants;(3)the diffusion ratio at the top of the rice plants(0.84)was better than that in the middle(0.57)and at the bottom(0.37).The overall relative span could meet the requirements for the actual application.Except for the position in the middle of the plants,the relative span for the other positions of the plants was over 0.67,which is the standard value.This study demonstrated the distribution regularity of droplet deposition along with the vertical direction of rice plants during UAV-based spraying,which is of guiding significance for the use of UAVs in plant protection,the improvement of chemical utilization efficiency,and the reduction of pesticide and fertilizer pollution. 展开更多
关键词 plant protection UAV droplet deposition Japonica rice droplet size vertical distribution SPRAYING Northeast China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部