The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported pol...A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.展开更多
This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative r...This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.展开更多
SiO is a wide-spread molecule found in interstellar space.Previous research has primarily focused on its spectroscopy,while its photodissociation dynamics is elusive to study due to high dissociation energy.Using time...SiO is a wide-spread molecule found in interstellar space.Previous research has primarily focused on its spectroscopy,while its photodissociation dynamics is elusive to study due to high dissociation energy.Using time-sliced ion velocity imaging technique,we observed the Si(^(3)P)+O(^(3)P)photodissociation process resulting from the excitation of highly vibrationally excited SiO(X^(1)Σ^(+),υ=13-18)molecules to the SiO(A^(1)Π,E^(1)Σ^(+))states at 193 nm.The vibrationally excited SiO molecules were generated via laser ablation of silicon rod with the collision of the oxygen molecular beam acting as carrier gas and reaction gas.The bond dissociation energy D_(e)(Si-O)is determined to be 67253±110 cm^(-1)(8.34±0.01 eV)based on the kinetic energy distribution spectrum.The SiO photodissociation study has deepened our understanding of the mechanisms of silicon chemistry for silica-rich rocky meteors as they burn in the Earth's atmosphere,and the dissociation of SiO from ablation of meteoroids following ultraviolet photon absorption.展开更多
Infectious disease outbreaks have seriously endangered global health owing to the scarcity of testing materials and techniques.Diversified materials and methods should be urgently developed for rapid detection and dis...Infectious disease outbreaks have seriously endangered global health owing to the scarcity of testing materials and techniques.Diversified materials and methods should be urgently developed for rapid detection and discrimination of pathogenic microorganisms.Conjugated polymer(CP)materials are macromolecular compounds comprising numerous covalently bonded luminescent units.They have excellent light-harvesting and optical signal amplification capabilities owing to the transmission of excitation energy along their backbone.In recent years,CP materials have aroused research enthusiasm in the biosensors field because of their outstanding optoelectronic properties.This brief manuscript provides an overall review of recent progress achieved in CP-based systems for pathogen sensing.展开更多
Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid(PA)with good sensitivity and selectivity.The sensitivity of the sensor was attribu...Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid(PA)with good sensitivity and selectivity.The sensitivity of the sensor was attributed to the specific electrostatic association effect of the cationic pyrenoviologens to the picrate anions,which also gave the sensor special selectivity among other compounds with similar structure.The electron transfer between them was attributed to the fluorescence response.Fluorescence lifetime measurements revealed that the quenching is static in nature.The novel and efficient pyrenoviologen derivatives-based sensors offered a strategy to fabricate real-life PA sensor.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
文摘A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.
文摘This study explores the risk control and response strategies of state-owned enterprises in the context of big data.Global economic uncertainty poses new challenges to state-owned enterprises,necessitating innovative risk management approaches.This article proposes response strategies from four key aspects:establishing a proactive risk management culture,building a foundation in technology and data,conducting big data-driven risk analysis,and implementing predictive analysis and real-time monitoring.State-owned enterprises can foster a proactive risk management culture by cultivating employee risk awareness,demonstrating leadership,and establishing transparency and open communication.Additionally,data integration and analysis,leveraging the latest technology,are crucial factors that can help companies better identify risks and opportunities.
基金supported by the National Natural Science Foundation of China(No.22073019 and No.21327901)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materials,and the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘SiO is a wide-spread molecule found in interstellar space.Previous research has primarily focused on its spectroscopy,while its photodissociation dynamics is elusive to study due to high dissociation energy.Using time-sliced ion velocity imaging technique,we observed the Si(^(3)P)+O(^(3)P)photodissociation process resulting from the excitation of highly vibrationally excited SiO(X^(1)Σ^(+),υ=13-18)molecules to the SiO(A^(1)Π,E^(1)Σ^(+))states at 193 nm.The vibrationally excited SiO molecules were generated via laser ablation of silicon rod with the collision of the oxygen molecular beam acting as carrier gas and reaction gas.The bond dissociation energy D_(e)(Si-O)is determined to be 67253±110 cm^(-1)(8.34±0.01 eV)based on the kinetic energy distribution spectrum.The SiO photodissociation study has deepened our understanding of the mechanisms of silicon chemistry for silica-rich rocky meteors as they burn in the Earth's atmosphere,and the dissociation of SiO from ablation of meteoroids following ultraviolet photon absorption.
基金supported by the Natural Science Foundation of China(No.21704005)Fundamental Research Funds for the Cen-tral Universities(No.300102310106).
文摘Infectious disease outbreaks have seriously endangered global health owing to the scarcity of testing materials and techniques.Diversified materials and methods should be urgently developed for rapid detection and discrimination of pathogenic microorganisms.Conjugated polymer(CP)materials are macromolecular compounds comprising numerous covalently bonded luminescent units.They have excellent light-harvesting and optical signal amplification capabilities owing to the transmission of excitation energy along their backbone.In recent years,CP materials have aroused research enthusiasm in the biosensors field because of their outstanding optoelectronic properties.This brief manuscript provides an overall review of recent progress achieved in CP-based systems for pathogen sensing.
基金supported by the National Natural Science Foundation of China(Nos.21603016,21704081,51603016 and21704005)Shaanxi College Students Innovation and Entrepreneurship Training Program(No.S201910710282)
文摘Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid(PA)with good sensitivity and selectivity.The sensitivity of the sensor was attributed to the specific electrostatic association effect of the cationic pyrenoviologens to the picrate anions,which also gave the sensor special selectivity among other compounds with similar structure.The electron transfer between them was attributed to the fluorescence response.Fluorescence lifetime measurements revealed that the quenching is static in nature.The novel and efficient pyrenoviologen derivatives-based sensors offered a strategy to fabricate real-life PA sensor.