Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state a...Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state at low temperature. The samples show a characteristic of ferromagnetism(FM) characteristic in the temperature range of 15-125 K and 15-150 K respectively; the samples show preformed clusters in the temperature range of 125-343 K and 150-325 K, respectively, the samples show paramagnetism(PM)characteristic above 343 and 325 K, respectively. The second-order transitions are found at 118 and 135 K for undoped and doped sample, respectively. When the applied magnetic field is 7 T, the maximum magnetic entropy change |△S_M| value of the samples is near the Curie temperature(Tc), and the value of|△S_M| reaches 2.76 and 3.03 J/(K kg), respectively. In addition, the relative cooling power(RCP) is found to be 425.28 and 443.53 J/kg. The numerical fitting data fit well with experimental data. These results indicate that both the samples have the potential to realize magnetic refrigeration in the high temperature region(T > 77 K).展开更多
Tb1-xTmxFeO3(x = 0.00,0.15,0.25) polycrystalline series were synthesized using a solid-state reaction.Our results show that all three prepared samples are in a distorted orthogonal structure and their space group is p...Tb1-xTmxFeO3(x = 0.00,0.15,0.25) polycrystalline series were synthesized using a solid-state reaction.Our results show that all three prepared samples are in a distorted orthogonal structure and their space group is pbnm.When the Tm3+doping amount increases,the characteristics of the spin-flip of the sample decreases following an initial increase at the beginning;the antiferromagnetic property almost reaches zero;the magnetization decreases at the beginning but increases later on.The maximum magnetic entropy change and magnetic refrigeration effect RCP are reduced at varying degrees.Under a 7 T magnetic field,the maximum magnetic entropy change,△Smax,for the three samples of Tb1-xTmxFeO3 with x=0.00,0.15,0.25 is 13.78,-9.28,and 10.69 J/(K·kg),respectively;the magnetic refrigeration capacity(RCP) is 316.85,175.2,and 297.60 J/kg,respectively.In summary,doping with the element Tm reduces △Smax and RCP of the sample.Since the maximum magnetic entropy change and the cooling capacity for the three samples are relatively large,they can be used as an alternative for magnetic refrigerants.展开更多
基金Project supported by the State Key Development Program for Basic Research of China(11164019,51562032,61565013)Inner Mongolia Natural Science Foundation(2015MS0109)+1 种基金Research Program of Sciences at Universities of Inner Mongolia Autonomous Region of China(NJZZ11166,NJZY 16237,NJZY12202)Young Science and Technology Foundation of Baotou Teachers'College(BSYKJ2014-22)
文摘Polycrystalline samples La_(0.9-x)EuxSr_(0.1)MnO_3(x = 0.000, 0.075) were prepared by the standard solid-state reaction method. The results show that the samples preform a characteristic of clusters spin-glass state at low temperature. The samples show a characteristic of ferromagnetism(FM) characteristic in the temperature range of 15-125 K and 15-150 K respectively; the samples show preformed clusters in the temperature range of 125-343 K and 150-325 K, respectively, the samples show paramagnetism(PM)characteristic above 343 and 325 K, respectively. The second-order transitions are found at 118 and 135 K for undoped and doped sample, respectively. When the applied magnetic field is 7 T, the maximum magnetic entropy change |△S_M| value of the samples is near the Curie temperature(Tc), and the value of|△S_M| reaches 2.76 and 3.03 J/(K kg), respectively. In addition, the relative cooling power(RCP) is found to be 425.28 and 443.53 J/kg. The numerical fitting data fit well with experimental data. These results indicate that both the samples have the potential to realize magnetic refrigeration in the high temperature region(T > 77 K).
基金the National Natural Science Foundation of China(11164019,51562032,61565013)Inner Mongolia Natural Science Foundation of China(2015MS0101,2015MS0109)+2 种基金Inner Mongolia Institute of Science and Technology Key Project Fund(NJZZ11166,NJZY16237,NJZY12202)Board Project(201522011)Natural Science Foundation of Henan Province(182300410248)。
文摘Tb1-xTmxFeO3(x = 0.00,0.15,0.25) polycrystalline series were synthesized using a solid-state reaction.Our results show that all three prepared samples are in a distorted orthogonal structure and their space group is pbnm.When the Tm3+doping amount increases,the characteristics of the spin-flip of the sample decreases following an initial increase at the beginning;the antiferromagnetic property almost reaches zero;the magnetization decreases at the beginning but increases later on.The maximum magnetic entropy change and magnetic refrigeration effect RCP are reduced at varying degrees.Under a 7 T magnetic field,the maximum magnetic entropy change,△Smax,for the three samples of Tb1-xTmxFeO3 with x=0.00,0.15,0.25 is 13.78,-9.28,and 10.69 J/(K·kg),respectively;the magnetic refrigeration capacity(RCP) is 316.85,175.2,and 297.60 J/kg,respectively.In summary,doping with the element Tm reduces △Smax and RCP of the sample.Since the maximum magnetic entropy change and the cooling capacity for the three samples are relatively large,they can be used as an alternative for magnetic refrigerants.