A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrime...A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrimethyl ammonium bromide (CTAB) as templates (samples C and D, respectively). Textural and acidic properties of γ-alumina samples are characterized by XRD, N2 adsorption-desorption and NH3-TPD techniques. Vapor-phase dehydration of methanol into dimethyl ether is carried out over these samples. Among them, sample C shows the highest catalytic activity. NH3-TPD analysis reveals that the sample with smaller crystallite size possesses higher concentration of medium acidic sites and consequently higher catalytic activity. Thermal decomposition method leads to decrease in both surface area and moderate acidity, therefore it is the cause of lower catalytic activity.展开更多
The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether...The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether in a fixed-bed reactor under the same operating conditions (T = 300 ?C, P = 1 bar, LHSV = 2.8, 11.7, 26.1 h?1) and characterized by means of N2 adsorption-desorption, NH3-TPD, XRD, TGA and SEM techniques. According to the experimental results, the catalysts prepared using sol-gel method in non-aqueous medium showed better performance compared with those prepared by other methods.展开更多
Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared b...Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared by incorporation of table sugar in catalyst gel during the synthesis procedure. The catalysts were characterized by FTIR, XRD, FE-SEM, N2 adsorption-desorption, NH3-TPD and TGA analytical technics. The proposed material showed pore modification as well as acidity moderating properties in ZSM-5 catalyst. The methanol to gasoline reaction was conducted in a fixed bed reactor with a WHSV of 1.5 h-1.Methanol conversions, gasoline yield and selectivity in production for the synthesized catalysts were determined by gas chromatography method. The sugar modified catalyst converted more methanol than the conventional one and an enhancement in catalyst’s life time was observed. The selectivity to aromatics and durene were reduced compared to the conventional catalyst, so the gasoline quality was also further improved. The coking rate of catalysts was calculated employing TGA method. A reduction in coking rate and an increase in coke capacity of the modified catalyst were observed.展开更多
基金supported by the Petrochemical Research & Technology Company of National Petrochemical Company in Iran
文摘A series of nanocrystalline γ-alumina are synthesized by different procedures, namely, thermal decomposition method (sample A), precipita-tion method (sample B) and sol-gel method using sucrose and hexadecyltrimethyl ammonium bromide (CTAB) as templates (samples C and D, respectively). Textural and acidic properties of γ-alumina samples are characterized by XRD, N2 adsorption-desorption and NH3-TPD techniques. Vapor-phase dehydration of methanol into dimethyl ether is carried out over these samples. Among them, sample C shows the highest catalytic activity. NH3-TPD analysis reveals that the sample with smaller crystallite size possesses higher concentration of medium acidic sites and consequently higher catalytic activity. Thermal decomposition method leads to decrease in both surface area and moderate acidity, therefore it is the cause of lower catalytic activity.
基金supported by Iranian Nanotechnology Initiative Council
文摘The capability of sol-gel and conventional precipitation techniques for the synthesis of nanocrystalline γ-alumina was investigated. These catalysts were used for vapor-phase dehydration of methanol to dimethyl ether in a fixed-bed reactor under the same operating conditions (T = 300 ?C, P = 1 bar, LHSV = 2.8, 11.7, 26.1 h?1) and characterized by means of N2 adsorption-desorption, NH3-TPD, XRD, TGA and SEM techniques. According to the experimental results, the catalysts prepared using sol-gel method in non-aqueous medium showed better performance compared with those prepared by other methods.
基金the Petrochemical Research and Technology Company, Tehran, Iran for financial support of this research
文摘Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared by incorporation of table sugar in catalyst gel during the synthesis procedure. The catalysts were characterized by FTIR, XRD, FE-SEM, N2 adsorption-desorption, NH3-TPD and TGA analytical technics. The proposed material showed pore modification as well as acidity moderating properties in ZSM-5 catalyst. The methanol to gasoline reaction was conducted in a fixed bed reactor with a WHSV of 1.5 h-1.Methanol conversions, gasoline yield and selectivity in production for the synthesized catalysts were determined by gas chromatography method. The sugar modified catalyst converted more methanol than the conventional one and an enhancement in catalyst’s life time was observed. The selectivity to aromatics and durene were reduced compared to the conventional catalyst, so the gasoline quality was also further improved. The coking rate of catalysts was calculated employing TGA method. A reduction in coking rate and an increase in coke capacity of the modified catalyst were observed.