The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1...The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1 and 1:2)on the organic product distribution(acetaldehyde,acetic acid and ethyl acetate)and pure hydrogen generation at different current densities operation levels.Physicochemical characterization of the catalysts was made by X-ray diffraction(XRD),temperature-programmed reduction(TPR)and N_(2) adsorption-desorption measurements.XRD patterns showed that Ru is introduced into the Pt structure,forming an alloy between both metals.Also,the degree of alloy was higher by increasing the Ru amounts.From TPR profiles Pt was found to be properly reduced while Ru was both in metallic state and forming RuO2.The electrochemical behaviour of each catalyst towards ethanol electroreforming process was investigated through electrochemical techniques in a half cell and a single proton exchange membrane(PEM)cell systems.An intermediate Pt:Ru ratio was found to result in high current density and electrochemical surface area(ECSA)values along with lower amounts of adsorbed species.Also,Ru addition seems to diminish the degree of degradation of the catalyst.Based on characterization and in agreement with essays carried out in a PEM cell at mild conditions(80℃ and 1 atm),PtRu/C 2:1 anode provided the best electrocatalytic results in terms of current density(740 mA cm^(-2)),hydrogen production and selectivity toward acetic acid(up to 15%apart from acetaldehyde and ethyl acetate)while requiring the lowest energy consumption.展开更多
The aim of this work is to boost the combined hydrogen and added-values compounds generation(acetaldehyde, acetic acid and ethyl acetate) through ethanol electrochemical reforming using bimetallic anodes. In particula...The aim of this work is to boost the combined hydrogen and added-values compounds generation(acetaldehyde, acetic acid and ethyl acetate) through ethanol electrochemical reforming using bimetallic anodes. In particular, the influence of the secondary metal on the electrochemical performance as well as on the product distribution was studied. For that purpose, Pt X/C electrocatalysts(where X corresponds to Cu, Co, Ni and Ru) were synthesized by the modified polyol method and tested in both half-cell and proton exchange membrane(PEM) cell configurations. Characterization results showed that incorporation of Ni and Co into the Pt matrix enhances the morphological properties of the material, providing smaller crystallite sizes, higher active surface areas and hence, better dispersion when comparing to Ru and Cu-based electrocatalysts. Ethanol oxidation reaction(EOR) was evaluated by cyclic, linear voltammetry and chronopotentiometry assays. Pt Co/C and Pt Ni/C exhibited the highest electrocatalytic activity at high polarization levels, which translate into an improvement of more than 30%(up to 1050 m A cm^(-2)) in the hydrogen production and chemical yields. On the other hand, Pt Ru/C results more advantageous for a lower potential interval(<0.85 V) promoting the acetic acid production despite sacrificing ethanol conversion. Pt Cu/C presented the lowest results in both electrochemical performance and product distribution. Such differences in the electrochemical performance can be rationalized in terms of the synergistic effect between both metals(particle size distribution, grade of dispersion and hydrophilic behavior), which demonstrate that the incorporation of a different secondary metal plays an essential role in the EOR development.展开更多
基金the Spanish Ministry of Economy and Competitiveness(projects CTQ2016-75491-R)for the financial support。
文摘The ethanol electro-reforming process was studied over PtRu/C catalysts synthesized by the modified polyol method with different compositions.In particular,this work reports the influence of anodic Pt:Ru ratio(5:1,2:1 and 1:2)on the organic product distribution(acetaldehyde,acetic acid and ethyl acetate)and pure hydrogen generation at different current densities operation levels.Physicochemical characterization of the catalysts was made by X-ray diffraction(XRD),temperature-programmed reduction(TPR)and N_(2) adsorption-desorption measurements.XRD patterns showed that Ru is introduced into the Pt structure,forming an alloy between both metals.Also,the degree of alloy was higher by increasing the Ru amounts.From TPR profiles Pt was found to be properly reduced while Ru was both in metallic state and forming RuO2.The electrochemical behaviour of each catalyst towards ethanol electroreforming process was investigated through electrochemical techniques in a half cell and a single proton exchange membrane(PEM)cell systems.An intermediate Pt:Ru ratio was found to result in high current density and electrochemical surface area(ECSA)values along with lower amounts of adsorbed species.Also,Ru addition seems to diminish the degree of degradation of the catalyst.Based on characterization and in agreement with essays carried out in a PEM cell at mild conditions(80℃ and 1 atm),PtRu/C 2:1 anode provided the best electrocatalytic results in terms of current density(740 mA cm^(-2)),hydrogen production and selectivity toward acetic acid(up to 15%apart from acetaldehyde and ethyl acetate)while requiring the lowest energy consumption.
基金We gratefully acknowledge the Spanish Ministry of Science and Innovation(project PID2019-107499RB-100 and FPI grant BES-2017-081181)for the financial support.
文摘The aim of this work is to boost the combined hydrogen and added-values compounds generation(acetaldehyde, acetic acid and ethyl acetate) through ethanol electrochemical reforming using bimetallic anodes. In particular, the influence of the secondary metal on the electrochemical performance as well as on the product distribution was studied. For that purpose, Pt X/C electrocatalysts(where X corresponds to Cu, Co, Ni and Ru) were synthesized by the modified polyol method and tested in both half-cell and proton exchange membrane(PEM) cell configurations. Characterization results showed that incorporation of Ni and Co into the Pt matrix enhances the morphological properties of the material, providing smaller crystallite sizes, higher active surface areas and hence, better dispersion when comparing to Ru and Cu-based electrocatalysts. Ethanol oxidation reaction(EOR) was evaluated by cyclic, linear voltammetry and chronopotentiometry assays. Pt Co/C and Pt Ni/C exhibited the highest electrocatalytic activity at high polarization levels, which translate into an improvement of more than 30%(up to 1050 m A cm^(-2)) in the hydrogen production and chemical yields. On the other hand, Pt Ru/C results more advantageous for a lower potential interval(<0.85 V) promoting the acetic acid production despite sacrificing ethanol conversion. Pt Cu/C presented the lowest results in both electrochemical performance and product distribution. Such differences in the electrochemical performance can be rationalized in terms of the synergistic effect between both metals(particle size distribution, grade of dispersion and hydrophilic behavior), which demonstrate that the incorporation of a different secondary metal plays an essential role in the EOR development.