In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization mod...In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization modeling, to be used in the preliminary design phase, for the turbine cover plate of an aero-engine. The parameterization modeling of the turbine cover plate is achieved by using commercial CAD (computer aided design) software processing in batch mode. Two main approaches are presented the outer face and the skeleton models. These models can then be integrated into an iterative process for designing optimal shapes. Both models are capable of reproducing existing cover plate with reasonable accuracy in relatively shorter time periods. However, the skeleton approach provides probably the best results in terms of flexibility and accuracy, but increases programming complexity and requires greater run times.展开更多
The present article covers briefly state of the art software interoperability technical solutions and the development of the first module of a new single platform D & A (design & analysis) tool for simulation and ...The present article covers briefly state of the art software interoperability technical solutions and the development of the first module of a new single platform D & A (design & analysis) tool for simulation and prediction of stress and burst behavior of turbine rotating disc a preliminary design stage. This platform singularity requires integration of multiple CAD (computer assisted design) & FEA (finite element analysis) tools processing in batch mode and driven from a SPIE (single platform integration environment). This first module is also to demonstrate, for an axial turbine disc hub axi-symmetric component, feasibility and usefulness of such a platform at preliminary design stage. Expected benefits of the D & A single platform are to improve output accuracy, reduce cycle time, improve process quality and improve resource productivity.展开更多
文摘In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization modeling, to be used in the preliminary design phase, for the turbine cover plate of an aero-engine. The parameterization modeling of the turbine cover plate is achieved by using commercial CAD (computer aided design) software processing in batch mode. Two main approaches are presented the outer face and the skeleton models. These models can then be integrated into an iterative process for designing optimal shapes. Both models are capable of reproducing existing cover plate with reasonable accuracy in relatively shorter time periods. However, the skeleton approach provides probably the best results in terms of flexibility and accuracy, but increases programming complexity and requires greater run times.
文摘The present article covers briefly state of the art software interoperability technical solutions and the development of the first module of a new single platform D & A (design & analysis) tool for simulation and prediction of stress and burst behavior of turbine rotating disc a preliminary design stage. This platform singularity requires integration of multiple CAD (computer assisted design) & FEA (finite element analysis) tools processing in batch mode and driven from a SPIE (single platform integration environment). This first module is also to demonstrate, for an axial turbine disc hub axi-symmetric component, feasibility and usefulness of such a platform at preliminary design stage. Expected benefits of the D & A single platform are to improve output accuracy, reduce cycle time, improve process quality and improve resource productivity.