In order to obtain good driving performance,a driving force model is presented for non-pneumatic elastic wheel.Brush model of pneumatic tyres is introduced and the deformations of elastic supports and tread are also t...In order to obtain good driving performance,a driving force model is presented for non-pneumatic elastic wheel.Brush model of pneumatic tyres is introduced and the deformations of elastic supports and tread are also taken into account.The longitudinal slip rate is redefined.The grounding pressure distribution of elastic wheels is analyzed and corrected according to speed,temperature and stiffness.Then rolling resistance equation is developed.Finally,simulation is conducted by software CarSim,and the results show that the estimated values are consistent with simulation values,especially at low longitudinal slip rate.The research can help to optimize design of non-pneumatic elastic wheel.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
基金supported by the Major Exploration Project of the General Armaments Department of China(NHA13002)the Funding of Jiangsu Innovation Program for Graduate Education+2 种基金the Fundamental Research Funds for the Central Universities of China(CXLX13_145)Jiangsu Province″333 Project″Training Funded Project(BRA2015365)the National Natural Science Foundation of Youth Fund Project(51305175,61503163)
文摘In order to obtain good driving performance,a driving force model is presented for non-pneumatic elastic wheel.Brush model of pneumatic tyres is introduced and the deformations of elastic supports and tread are also taken into account.The longitudinal slip rate is redefined.The grounding pressure distribution of elastic wheels is analyzed and corrected according to speed,temperature and stiffness.Then rolling resistance equation is developed.Finally,simulation is conducted by software CarSim,and the results show that the estimated values are consistent with simulation values,especially at low longitudinal slip rate.The research can help to optimize design of non-pneumatic elastic wheel.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.