In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy throu...In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed.展开更多
Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were hi...Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.展开更多
The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepar...The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepared with two electrode configuration modes of single power ESR process, namely one electrode(OE) and two series-connected electrodes(TSCE). Finite element simulation was employed to calculate the electromagnetic field, flow field and temperature field of the ESR system. The results show that the temperature of the slag pool and the metal pool of the TSCE process is lower and more uniform than that of the OE process.The calculated temperature distribution of the ingot could be indirectly verified from the shape of the metal pool by the experiment. The experimental results show that the depth of the metal pool in the OE ingot is about 160 mm, while the depth of the TSCE ingot is nearly 40 mm shallower than that of the OE ingot. Microstructural comparisons indicate that coarse eutectic carbides are formed in the center of the OE ingot, whereas more even eutectic carbides appear in the center of the TSCE ingot. In general, compared with the OE process, the TSCE process is preferred to remelt high speed steel ingots.展开更多
Large-size primary MC carbides can significantly reduce the performance of M2 high-speed steel.To better control the morphology and size of primary MC carbides,the effect of melting rate on microsegregation and primar...Large-size primary MC carbides can significantly reduce the performance of M2 high-speed steel.To better control the morphology and size of primary MC carbides,the effect of melting rate on microsegregation and primary MC carbides of M2 steel during electroslag remelting was investigated.When the melting rate is decreased from 2 kg·min^(-1) to 0.8 kg·min^(-1),the columnar dendrites are gradually coarsened,and the extent of segregation of Mo and V is alleviated,while the segregation of Cr becomes severe.At 2 kg·min^(-1),the number of primary MC carbides per unit area with the sizes in the range of 2 μm to 6 μm accounts for about 75% of all MC carbides,while the carbides are mainly concentrated on the size larger than 8 μm at 0.8 kg·min^(-1).Thermodynamic calculations based on the Clyne-Kurz (simplified to C-K) model shows that MC carbide can be precipitated in the final solidification stage and a smaller secondary dendrite arm spacing caused by higher melting rate (2 kg·min^(-1) in this experiment) facilitates the refinement of primary MC carbides.展开更多
Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods ...Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field.展开更多
Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global ...Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global market for wrought Mg alloys has steadily expanded over the past decade. And numerous studies have been carried out to meet this increasing demand of high-performance Mg alloys. However, Mg extrusion alloys have had a very limited usage so far. To overcome existing industrial challenges, one desirable approach is the development of low-cost rare earth(RE) free Mg extrusion alloys with superior mechanical properties. This review will introduce the recent research highlights in the extrusion of Mg alloys, specifi cally focusing on low-cost RE-free Mg alloy. The results from both the literature and our previous study are summarized and critically reviewed. Several aspects of RE-free Mg extrusion alloys are described in detail:(1) novel alloying designs including Mg–Al-, Mg–Zn-, Mg–Ca-, Mg–Sn-, and Mg–Bi-based alloys,(2) advanced extrusion techniques, and(3) extrusion-related severe plastic deformation(SPD) processing. Accordingly, considering the large gap in mechanical properties between the current RE-free Mg alloys and high-performance aluminum alloys, new alloy design, processing route control, and recommendations for future research on RE-free Mg extrusion alloys are also proposed. We hope this review will not only off er insightful information regarding the extrusion of RE-free Mg alloys but also inspire the development of new Mg extrusion technologies.展开更多
Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of w...Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of weld metal was investigated.The weld-metal microstructure mainly consisted of pre-eutectoid ferrite,side-plate ferrite,acicular ferrite and lath bainite at a low welding speed.With the increase in welding speed,acicular ferrite and lath bainite were the dominant weld-metal microstructures.All samples failed at the base metal during tensile tests,which indicates that there is no soft zone in the hybrid welds.The welding speed had a significant effect on the impact toughness of the weld metal.The impact absorbed energy of the weld metal increased from 35 to 105 J with the increase in welding speed from 0.8 to 2.0 m/min.Large amounts of acicular ferrite and lath bainite were formed in the weld metal at a high welding speed,which resulted in an excellent impact toughness.展开更多
Large-sized precipitates are fatal to the thermal fatigue of H13 hot work die steel.Different amounts of Ti and/or rare earth(RE)were added in H13 steel during electroslag remelting to improve the element segregation ...Large-sized precipitates are fatal to the thermal fatigue of H13 hot work die steel.Different amounts of Ti and/or rare earth(RE)were added in H13 steel during electroslag remelting to improve the element segregation and refine the large-sized precipitates.The results show that as Ti content increases from 0.0032 to 0.057 wt.%,the segregation of Cr,Mo and V becomes more severe.V-rich M(C,N)carbides are shorter,and their branches are denser in 3D observation.Moreover,the number density of V-rich M(C,N)carbides with a size less than 2μm increases and that with other sizes decreases.In addition,Ti-rich MN nitrides with the size greater than 4μm increases significantly at high Ti content.When RE content increases from 0.0051 to 0.036 wt.%,the segregation of main alloying elements is first weakened and then aggravated.Compared with that in RE-free H13 steel,V-rich M(C,N)carbides are less developed in 3D observation,and the change in number density is similar to that of Ti-modified alloys.After composite modification of 0.024 wt.%Ti and 0.011 wt.%RE,the segregation of alloying element and V-rich M(C,N)carbides are not significantly improved.展开更多
A method which combines electronegativity difference,CALculation of PHAse Diagrams(CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co-Cr-Fe-Ni-Mo multi-componen...A method which combines electronegativity difference,CALculation of PHAse Diagrams(CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co-Cr-Fe-Ni-Mo multi-component phase diagram.First,the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning,to avoid the formation of brittle phases.Then high yield strength points in the single-phase region are selected by electronegativity difference.The yield strength and plastic deformation behavior of the designed Co_(14)Cr_(30)Ni_(50)Mo_(6)alloy are measured to evaluate the proposed method.The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space.Meanwhile,the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co_(14)Cr_(30)Ni_(50)Mo_(6)alloy.The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys.展开更多
Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained stee...Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained steel were investigated. The results showed that the thickness of bainite plate and the amount of retained austenite decreased obviously after the twostage transformation, while the carbon concentration in the retained austenite showed a small change. With increase in the second holding temperature within the bainite transformation range, all of them increased slightly. The additional formation of bainite at the second transformation stage is beneficial to refining the austenite and further enriching it with carbon, resulting in the enhancement of the mechanical stability. Bainite transformed in two-stage process showed a better comprehensive performance. Absorbed impact energy of 88 J and an ultimate tensile strength of 1818 MPa have been achieved by isothermal heat treatment at 300 ℃ followed by 260 ℃. Meanwhile, there was a slight change in mechanical properties when the second transformation temperature varied from 260 to 220 ℃.展开更多
基金supported by the Guangdong Academy of Sciences,China(No.2021GDASYL-20210102002)the Foundation Strengthening Program,China(No.2019-JCJQ-ZD-142-00)the Hebei Province Graduate Innovation Funding Project,China(No.CXZZBS2022032).
基金supported by the Natural Science Foundation of Hebei Province,China(No.E2021202017)the National Natural Science Foundation of China(No.52061038)+3 种基金the Foundation Strengthening Program,China(No.2019-JCJQ-ZD-142-00)the Hebei Province Graduate Innovation Funding Project,China(No.CXZZBS2022032)the Jiangsu Provincial Policy Guidance Program(Special Project for the Introduction of Foreign Talents)Talent Introduction Program,China(No.BX2021024)the Science Plan Foundation of Tianjin Municipal Education Commission,China(No.2021KJ026)。
文摘In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed.
基金the financial supports from the National Key Research and Development Program of China (No. 2022YFB3707501)the National Natural Science Foundation of China (No. 51701083)+1 种基金the GDAS Project of Science and Technology Development, China (No. 2022GDASZH2022010107)the Guangzhou Basic and Applied Basic Research Foundation, China (No. 202201010686)。
文摘Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.
基金financially surpported by the Foundation of Hebei Provincial Department of Education,China(Grant No.QN2018034 and QN2017051)
文摘The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepared with two electrode configuration modes of single power ESR process, namely one electrode(OE) and two series-connected electrodes(TSCE). Finite element simulation was employed to calculate the electromagnetic field, flow field and temperature field of the ESR system. The results show that the temperature of the slag pool and the metal pool of the TSCE process is lower and more uniform than that of the OE process.The calculated temperature distribution of the ingot could be indirectly verified from the shape of the metal pool by the experiment. The experimental results show that the depth of the metal pool in the OE ingot is about 160 mm, while the depth of the TSCE ingot is nearly 40 mm shallower than that of the OE ingot. Microstructural comparisons indicate that coarse eutectic carbides are formed in the center of the OE ingot, whereas more even eutectic carbides appear in the center of the TSCE ingot. In general, compared with the OE process, the TSCE process is preferred to remelt high speed steel ingots.
基金financially supported by the National Natural Science Foundation of China(No.51904087)the Open Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2019-20)+2 种基金the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(No.E2019202482)Tianjin Science and Technology Project(No.18YFZCGX00220)。
文摘Large-size primary MC carbides can significantly reduce the performance of M2 high-speed steel.To better control the morphology and size of primary MC carbides,the effect of melting rate on microsegregation and primary MC carbides of M2 steel during electroslag remelting was investigated.When the melting rate is decreased from 2 kg·min^(-1) to 0.8 kg·min^(-1),the columnar dendrites are gradually coarsened,and the extent of segregation of Mo and V is alleviated,while the segregation of Cr becomes severe.At 2 kg·min^(-1),the number of primary MC carbides per unit area with the sizes in the range of 2 μm to 6 μm accounts for about 75% of all MC carbides,while the carbides are mainly concentrated on the size larger than 8 μm at 0.8 kg·min^(-1).Thermodynamic calculations based on the Clyne-Kurz (simplified to C-K) model shows that MC carbide can be precipitated in the final solidification stage and a smaller secondary dendrite arm spacing caused by higher melting rate (2 kg·min^(-1) in this experiment) facilitates the refinement of primary MC carbides.
基金supported by the National Natural Science Foundation of China (No.51701061)the Natural Science Foundation of Hebei Province (Nos.E2023202047 and E2021202075)+1 种基金the Key-Area R&D Program of Guangdong Province (No.2020B0101340004)Guangdong Academy of Science (2021GDASYL-20210102002).
文摘Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field.
基金support from the National Natural Science Foundation of China(Nos.51701060 and 51601181)the Natural Science Foundation of Hebei Province(Grant No.E2016202130) and Tianjin city(No.18JCQNJC03900)+1 种基金the Graduate Student Outstanding Innovation Project of Hebei Province(Grant No.CXZZBS2018030)the Joint Doctoral Training Foundation of HEBUT(Grant No.2018HW0008)
文摘Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global market for wrought Mg alloys has steadily expanded over the past decade. And numerous studies have been carried out to meet this increasing demand of high-performance Mg alloys. However, Mg extrusion alloys have had a very limited usage so far. To overcome existing industrial challenges, one desirable approach is the development of low-cost rare earth(RE) free Mg extrusion alloys with superior mechanical properties. This review will introduce the recent research highlights in the extrusion of Mg alloys, specifi cally focusing on low-cost RE-free Mg alloy. The results from both the literature and our previous study are summarized and critically reviewed. Several aspects of RE-free Mg extrusion alloys are described in detail:(1) novel alloying designs including Mg–Al-, Mg–Zn-, Mg–Ca-, Mg–Sn-, and Mg–Bi-based alloys,(2) advanced extrusion techniques, and(3) extrusion-related severe plastic deformation(SPD) processing. Accordingly, considering the large gap in mechanical properties between the current RE-free Mg alloys and high-performance aluminum alloys, new alloy design, processing route control, and recommendations for future research on RE-free Mg extrusion alloys are also proposed. We hope this review will not only off er insightful information regarding the extrusion of RE-free Mg alloys but also inspire the development of new Mg extrusion technologies.
基金National Key R&D program of China(No.2018YFB1107900)the Equipment Pre-research Project of China(No.41422010105).
文摘Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of weld metal was investigated.The weld-metal microstructure mainly consisted of pre-eutectoid ferrite,side-plate ferrite,acicular ferrite and lath bainite at a low welding speed.With the increase in welding speed,acicular ferrite and lath bainite were the dominant weld-metal microstructures.All samples failed at the base metal during tensile tests,which indicates that there is no soft zone in the hybrid welds.The welding speed had a significant effect on the impact toughness of the weld metal.The impact absorbed energy of the weld metal increased from 35 to 105 J with the increase in welding speed from 0.8 to 2.0 m/min.Large amounts of acicular ferrite and lath bainite were formed in the weld metal at a high welding speed,which resulted in an excellent impact toughness.
基金The authors wish to express thanks to the National Natural Science Foundation of China(No.51904087)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(No.E2019202482)+1 种基金the Open Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2019-20)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200).
文摘Large-sized precipitates are fatal to the thermal fatigue of H13 hot work die steel.Different amounts of Ti and/or rare earth(RE)were added in H13 steel during electroslag remelting to improve the element segregation and refine the large-sized precipitates.The results show that as Ti content increases from 0.0032 to 0.057 wt.%,the segregation of Cr,Mo and V becomes more severe.V-rich M(C,N)carbides are shorter,and their branches are denser in 3D observation.Moreover,the number density of V-rich M(C,N)carbides with a size less than 2μm increases and that with other sizes decreases.In addition,Ti-rich MN nitrides with the size greater than 4μm increases significantly at high Ti content.When RE content increases from 0.0051 to 0.036 wt.%,the segregation of main alloying elements is first weakened and then aggravated.Compared with that in RE-free H13 steel,V-rich M(C,N)carbides are less developed in 3D observation,and the change in number density is similar to that of Ti-modified alloys.After composite modification of 0.024 wt.%Ti and 0.011 wt.%RE,the segregation of alloying element and V-rich M(C,N)carbides are not significantly improved.
基金supported by the National Natural Science Foundation of China (Grant No.51701061)the Natural Science Foundation of Hebei Province (Grant Nos.E2019202059, E2020202124)the foundation strengthening program (Grant No. 2019-JCJQ-142)。
文摘A method which combines electronegativity difference,CALculation of PHAse Diagrams(CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co-Cr-Fe-Ni-Mo multi-component phase diagram.First,the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning,to avoid the formation of brittle phases.Then high yield strength points in the single-phase region are selected by electronegativity difference.The yield strength and plastic deformation behavior of the designed Co_(14)Cr_(30)Ni_(50)Mo_(6)alloy are measured to evaluate the proposed method.The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space.Meanwhile,the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co_(14)Cr_(30)Ni_(50)Mo_(6)alloy.The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys.
基金This work was financially supported by the Natural Science Foundation of Hebei Province of China under Grant Nos. QN2015259, E2016202121 and BJ2017009.
文摘Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained steel were investigated. The results showed that the thickness of bainite plate and the amount of retained austenite decreased obviously after the twostage transformation, while the carbon concentration in the retained austenite showed a small change. With increase in the second holding temperature within the bainite transformation range, all of them increased slightly. The additional formation of bainite at the second transformation stage is beneficial to refining the austenite and further enriching it with carbon, resulting in the enhancement of the mechanical stability. Bainite transformed in two-stage process showed a better comprehensive performance. Absorbed impact energy of 88 J and an ultimate tensile strength of 1818 MPa have been achieved by isothermal heat treatment at 300 ℃ followed by 260 ℃. Meanwhile, there was a slight change in mechanical properties when the second transformation temperature varied from 260 to 220 ℃.