期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Al−10Nb−3Ce−2.5B孕育剂对Zn−Al共析合金显微组织、阻尼和拉伸力学性能的影响 被引量:1
1
作者 张建军 殷福星 +5 位作者 余晖 冀璞光 刘力 李玉芳 焦志娴 王清周 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第2期465-479,共15页
制备一种新型Al−10Nb−3Ce−2.5B孕育剂,并系统研究其对锌铝共析(ZA22)合金显微组织、阻尼和拉伸力学性能的影响。结果表明,该孕育剂对ZA22合金中的α相具有显著的细化作用(α相最低可被细化至约16μm),并可使得α相的形貌从粗大枝晶状转... 制备一种新型Al−10Nb−3Ce−2.5B孕育剂,并系统研究其对锌铝共析(ZA22)合金显微组织、阻尼和拉伸力学性能的影响。结果表明,该孕育剂对ZA22合金中的α相具有显著的细化作用(α相最低可被细化至约16μm),并可使得α相的形貌从粗大枝晶状转变为细小花瓣状。通过边−边匹配晶体学模型(E2EM)建立孕育剂中CeB_(6)和NbB_(2)颗粒与α相之间的位向关系(ORs),并基于该E2EM模型揭示孕育剂对ZA22合金的细化机理。与未细化ZA22合金相比,孕育细化ZA22合金的高温阻尼性能,特别是逆共析转变阻尼峰得到显著提升。此外,孕育细化ZA22合金的室温拉伸力学性能也得到了显著提高,具有最佳细化效果的ZA22合金的抗拉强度和伸长率分别比未细化ZA22合金的高18.56%和119.04%。对相关机理进行了讨论。 展开更多
关键词 Zn−Al共析合金 孕育剂 显微组织细化 阻尼 拉伸力学性能
下载PDF
Improving comprehensive properties of Cu-11.9Al-2.5Mn shape memory alloy by adding multi-layer graphene carried by Cu_(51)Zr_(14)inoculant particles
2
作者 Zhi-xian JIAO Qing-zhou WANG +4 位作者 Yan-jun DING fu-xing yin Chao-hui XU Cui-hong HAN Qi-xiang FAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3265-3281,共17页
In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy throu... In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed. 展开更多
关键词 Cu−Al−Mn shape memory alloy multilayer graphene(MLG) microstructure interface damping mechanical properties
下载PDF
High-throughput studies and machine learning for design of β titanium alloys with optimum properties
3
作者 Wei-min CHEN Jin-feng LING +4 位作者 Kewu BAI Kai-hong ZHENG fu-xing yin Li-jun ZHANG Yong DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3194-3207,共14页
Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were hi... Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications. 展开更多
关键词 HIGH-THROUGHPUT machine learning Ti-based alloys diffusion couple mechanical properties wear behavior
下载PDF
Effects of electrode configuration on electroslag remelting process of M2 high-speed steel ingot 被引量:3
4
作者 fu-xing yin Yu Liang +3 位作者 Zhi-xia Xiao Jian-hang Feng Zhi-bin Xie Yong-wang Mi 《China Foundry》 SCIE 2019年第2期126-134,共9页
The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepar... The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepared with two electrode configuration modes of single power ESR process, namely one electrode(OE) and two series-connected electrodes(TSCE). Finite element simulation was employed to calculate the electromagnetic field, flow field and temperature field of the ESR system. The results show that the temperature of the slag pool and the metal pool of the TSCE process is lower and more uniform than that of the OE process.The calculated temperature distribution of the ingot could be indirectly verified from the shape of the metal pool by the experiment. The experimental results show that the depth of the metal pool in the OE ingot is about 160 mm, while the depth of the TSCE ingot is nearly 40 mm shallower than that of the OE ingot. Microstructural comparisons indicate that coarse eutectic carbides are formed in the center of the OE ingot, whereas more even eutectic carbides appear in the center of the TSCE ingot. In general, compared with the OE process, the TSCE process is preferred to remelt high speed steel ingots. 展开更多
关键词 ELECTROSLAG REMELTING metal POOL shape electromagnetic field EUTECTIC carbides high speed steel
下载PDF
Effect of melting rate on microsegregation and primary MC carbides in M2 high-speed steel during electroslag remelting 被引量:2
5
作者 fu-xing yin Ming Su +4 位作者 Fa Ji Qing-chao Tian Ya-guan Bai Jian-hang Feng Zhi-xia Xiao 《China Foundry》 SCIE CAS 2021年第3期163-169,共7页
Large-size primary MC carbides can significantly reduce the performance of M2 high-speed steel.To better control the morphology and size of primary MC carbides,the effect of melting rate on microsegregation and primar... Large-size primary MC carbides can significantly reduce the performance of M2 high-speed steel.To better control the morphology and size of primary MC carbides,the effect of melting rate on microsegregation and primary MC carbides of M2 steel during electroslag remelting was investigated.When the melting rate is decreased from 2 kg·min^(-1) to 0.8 kg·min^(-1),the columnar dendrites are gradually coarsened,and the extent of segregation of Mo and V is alleviated,while the segregation of Cr becomes severe.At 2 kg·min^(-1),the number of primary MC carbides per unit area with the sizes in the range of 2 μm to 6 μm accounts for about 75% of all MC carbides,while the carbides are mainly concentrated on the size larger than 8 μm at 0.8 kg·min^(-1).Thermodynamic calculations based on the Clyne-Kurz (simplified to C-K) model shows that MC carbide can be precipitated in the final solidification stage and a smaller secondary dendrite arm spacing caused by higher melting rate (2 kg·min^(-1) in this experiment) facilitates the refinement of primary MC carbides. 展开更多
关键词 high-speed steel MC carbide melting rate electroslag remelting MICROSEGREGATION
下载PDF
Machine learning-based performance predictions for steels considering manufacturing process parameters:a review
6
作者 Wei Fang Jia-xin Huang +2 位作者 Tie-xu Peng Yang Long fu-xing yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第7期1555-1581,共27页
Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods ... Steels are widely used as structural materials,making them essential for supporting our lives and industries.However,further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production.To address this challenge,the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance.This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials.The classification of performance pre-diction was used to assess the current application of machine learning model-assisted design.Several important issues,such as data source and characteristics,intermediate features,algorithm optimization,key feature analysis,and the role of environmental factors,were summarized and analyzed.These insights will be beneficial and enlightening to future research endeavors in this field. 展开更多
关键词 STEEL Manufacturing process Machine learning Performance prediction Algorithm
原文传递
Recent Progress and Development in Extrusion of Rare Earth Free Mg Alloys: A Review 被引量:15
7
作者 Shuai-Ju Meng Hui Yu +10 位作者 Shao-Da Fan Qi-Zhi Li Sung Hyuk Park Joung Sik Suh Young Min Kim Xiao-Long Nan Ming-Zhe Bian fu-xing yin Wei-Min Zhao Bong Sun You Kwang Seon Shin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第2期145-168,共24页
Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global ... Mg and its alloys are the lightest structural metals available and are extremely attractive for applications as lightweight components, particularly in the automobile, electronic, and aerospace industries. The global market for wrought Mg alloys has steadily expanded over the past decade. And numerous studies have been carried out to meet this increasing demand of high-performance Mg alloys. However, Mg extrusion alloys have had a very limited usage so far. To overcome existing industrial challenges, one desirable approach is the development of low-cost rare earth(RE) free Mg extrusion alloys with superior mechanical properties. This review will introduce the recent research highlights in the extrusion of Mg alloys, specifi cally focusing on low-cost RE-free Mg alloy. The results from both the literature and our previous study are summarized and critically reviewed. Several aspects of RE-free Mg extrusion alloys are described in detail:(1) novel alloying designs including Mg–Al-, Mg–Zn-, Mg–Ca-, Mg–Sn-, and Mg–Bi-based alloys,(2) advanced extrusion techniques, and(3) extrusion-related severe plastic deformation(SPD) processing. Accordingly, considering the large gap in mechanical properties between the current RE-free Mg alloys and high-performance aluminum alloys, new alloy design, processing route control, and recommendations for future research on RE-free Mg extrusion alloys are also proposed. We hope this review will not only off er insightful information regarding the extrusion of RE-free Mg alloys but also inspire the development of new Mg extrusion technologies. 展开更多
关键词 Mg ALLOY EXTRUSION RARE EARTH free Novel processing Mechanical properties
原文传递
Microstructure and mechanical properties of weld metal in laser and gas metal arc hybrid welding of 440-MPa-grade high-strength steel 被引量:4
8
作者 fu-xing yin Xu-chen Li +3 位作者 Cui-xin Chen Lin Zhao Yun Peng Zhi-ling Tian 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第7期853-861,共9页
Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of w... Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of weld metal was investigated.The weld-metal microstructure mainly consisted of pre-eutectoid ferrite,side-plate ferrite,acicular ferrite and lath bainite at a low welding speed.With the increase in welding speed,acicular ferrite and lath bainite were the dominant weld-metal microstructures.All samples failed at the base metal during tensile tests,which indicates that there is no soft zone in the hybrid welds.The welding speed had a significant effect on the impact toughness of the weld metal.The impact absorbed energy of the weld metal increased from 35 to 105 J with the increase in welding speed from 0.8 to 2.0 m/min.Large amounts of acicular ferrite and lath bainite were formed in the weld metal at a high welding speed,which resulted in an excellent impact toughness. 展开更多
关键词 Laser-arc hybrid welding High-strength steel Microstructure Mechanical property
原文传递
Effect of Ti and rare earth on microsegregation and large-sized precipitates of H13 steel 被引量:2
9
作者 Fa Ji Rui Xu +4 位作者 Yu-long Gao Qing-chao Tian Lu Wang Zhi-xia Xiao fu-xing yin 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第12期1591-1604,共14页
Large-sized precipitates are fatal to the thermal fatigue of H13 hot work die steel.Different amounts of Ti and/or rare earth(RE)were added in H13 steel during electroslag remelting to improve the element segregation ... Large-sized precipitates are fatal to the thermal fatigue of H13 hot work die steel.Different amounts of Ti and/or rare earth(RE)were added in H13 steel during electroslag remelting to improve the element segregation and refine the large-sized precipitates.The results show that as Ti content increases from 0.0032 to 0.057 wt.%,the segregation of Cr,Mo and V becomes more severe.V-rich M(C,N)carbides are shorter,and their branches are denser in 3D observation.Moreover,the number density of V-rich M(C,N)carbides with a size less than 2μm increases and that with other sizes decreases.In addition,Ti-rich MN nitrides with the size greater than 4μm increases significantly at high Ti content.When RE content increases from 0.0051 to 0.036 wt.%,the segregation of main alloying elements is first weakened and then aggravated.Compared with that in RE-free H13 steel,V-rich M(C,N)carbides are less developed in 3D observation,and the change in number density is similar to that of Ti-modified alloys.After composite modification of 0.024 wt.%Ti and 0.011 wt.%RE,the segregation of alloying element and V-rich M(C,N)carbides are not significantly improved. 展开更多
关键词 H13 steel SEGREGATION Primary carbide TI Rare earth PRECIPITATE
原文传递
Composition design of high yield strength points in single-phase Co-Cr-Fe-Ni-Mo multi-principal element alloys system based on electronegativity,thermodynamic calculations,and machine learning 被引量:1
10
作者 Jiao-Hui Yan Zi-Jing Song +6 位作者 Wei Fang Xin-Bo He Ruo-Bin Chang Shao-Wu Huang Jia-Xin Huang Hao-Yang Yu fu-xing yin 《Tungsten》 EI CSCD 2023年第1期169-178,共10页
A method which combines electronegativity difference,CALculation of PHAse Diagrams(CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co-Cr-Fe-Ni-Mo multi-componen... A method which combines electronegativity difference,CALculation of PHAse Diagrams(CALPHAD) and machine learning has been proposed to efficiently screen the high yield strength regions in Co-Cr-Fe-Ni-Mo multi-component phase diagram.First,the single-phase region at a certain annealing temperature is obtained by combining CALPHAD method and machine learning,to avoid the formation of brittle phases.Then high yield strength points in the single-phase region are selected by electronegativity difference.The yield strength and plastic deformation behavior of the designed Co_(14)Cr_(30)Ni_(50)Mo_(6)alloy are measured to evaluate the proposed method.The validation experiments indicate this method is effective to predict high yield strength points in the whole compositional space.Meanwhile,the interactions between the high density of shear bands and dislocations contribute to the high ductility and good work hardening ability of Co_(14)Cr_(30)Ni_(50)Mo_(6)alloy.The method is helpful and instructive to property-oriented compositional design for multi-principal element alloys. 展开更多
关键词 High entropy alloys Multi-principal element alloys Yield strength Electronegativity difference CALculation of PHAse Diagrams Machine learning
原文传递
Microstructure and mechanical properties of nanobainitic steel subjected to multiple isothermal heat treatments
11
作者 Ning Liu Xin Zhang +2 位作者 Jing Ding Jun He fu-xing yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第10期1062-1067,共6页
Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained stee... Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained steel were investigated. The results showed that the thickness of bainite plate and the amount of retained austenite decreased obviously after the twostage transformation, while the carbon concentration in the retained austenite showed a small change. With increase in the second holding temperature within the bainite transformation range, all of them increased slightly. The additional formation of bainite at the second transformation stage is beneficial to refining the austenite and further enriching it with carbon, resulting in the enhancement of the mechanical stability. Bainite transformed in two-stage process showed a better comprehensive performance. Absorbed impact energy of 88 J and an ultimate tensile strength of 1818 MPa have been achieved by isothermal heat treatment at 300 ℃ followed by 260 ℃. Meanwhile, there was a slight change in mechanical properties when the second transformation temperature varied from 260 to 220 ℃. 展开更多
关键词 Nanostructured bainite Heat treatment MICROSTRUCTURE Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部