期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride
1
作者 Dong-qiang GAO fu-ying wu +4 位作者 Zhi ZHANG Zi-chuan LU Ren ZHOU Hu ZHAO Liu-ting ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2645-2657,共13页
To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre... To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles. 展开更多
关键词 hydrogen storage properties MgH_(2) graphene-loaded Ni−V bimetal oxides catalytic mechanism
下载PDF
二维Mo_(2)TiC_(2)MXene材料对调节MgH_(2)储氢性能的催化作用
2
作者 章浩宇 田贵宾 +3 位作者 吴富英 姚振东 郑家广 张刘挺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2023年第11期3465-3475,共11页
通过刻蚀Mo_(2)TiAlC_(2)合成二维Mo_(2)TiC_(2) MXene材料,并将其与MgH_(2)复合以调节MgH_(2)的储氢性能。Mo_(2)TiC_(2)的掺杂使MgH_(2)的初始放氢温度从330℃显著降低至187℃。等温放氢性能测试表明,MgH_(2)+9%Mo_(2)TiC_(2)(质量分... 通过刻蚀Mo_(2)TiAlC_(2)合成二维Mo_(2)TiC_(2) MXene材料,并将其与MgH_(2)复合以调节MgH_(2)的储氢性能。Mo_(2)TiC_(2)的掺杂使MgH_(2)的初始放氢温度从330℃显著降低至187℃。等温放氢性能测试表明,MgH_(2)+9%Mo_(2)TiC_(2)(质量分数)复合材料在300℃时4min内可快速释放6.4%(质量分数)的氢气。对于吸氢反应,完全脱氢的MgH_(2)+9%Mo_(2)TiC_(2)在175℃时5 min内吸收了6.5%(质量分数)的氢气。经过计算,MgH_(2)+9%Mo_(2)TiC_(2)的放氢反应活化能为(135.6±1.9)kJ/mol,吸氢反应活化能为(46.1±0.2)kJ/mol。20次循环后,MgH_(2)+9%Mo_(2)TiC_(2)复合材料的储氢容量损失1.0%(质量分数)。显微组织分析表明,Mo_(2)TiC_(2)中的Mo使MXene的稳定性增强、循环过程中活性Ti的生成量减少,从而导致催化剂的催化效果不如Ti_(3)C_(2)。 展开更多
关键词 储氢性能 氢化镁 Mo_(2)TiC_(2)MXene 催化机理
下载PDF
Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH_(2) for hydrogen storage 被引量:7
3
作者 Yan CHEN Hao-yu ZHANG +4 位作者 fu-ying wu Ze SUN Jia-guang ZHENG Liu-ting ZHANG Li-xin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3469-3477,共9页
Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was de... Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was decreased to 175℃ and 6.7,6.5 and 6.1 wt.%hydrogen could be released within 5,10 and 25 min at 300,275 and 250℃,respectively.Besides,the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.%hydrogen within 30 min at low temperature of 50℃.The hydrogenation activation energy of MgH_(2) was reduced from(72.5±2.7)to(18.8±0.2)kJ/mol after doping with 10 wt.%nano-Mn.In addition,the MgH_(2)+10 wt.%nano-Mn composite exhibited superior cyclic property,maintaining 92%initial capacity after 20 cycles. 展开更多
关键词 hydrogen storage material magnesium hydride Mn nanoparticles catalytic mechanism REVERSIBILITY
下载PDF
Optimizing FeCoNiCrTi high-entropy alloy with hydrogen pumping effect to boost de/hydrogenation performance of magnesium hydride
4
作者 Meng-Chen Song fu-ying wu +4 位作者 Yi-Qun Jiang Xiu-Zhen Wang Hu Zhao Li-Xin Chen Liu-Ting Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期3273-3285,共13页
The exploration of efficient,long-lived and cost-effective transition metal catalysts is highly desirable for the practical hydrogen storage of magnesium hydride(MgH_(2)) in sustainable energy devices.Herein,FeCoNiCrT... The exploration of efficient,long-lived and cost-effective transition metal catalysts is highly desirable for the practical hydrogen storage of magnesium hydride(MgH_(2)) in sustainable energy devices.Herein,FeCoNiCrTi high-entropy alloy(HEA) nanosheets were prepared via a facile wet chemical ball milling strategy and they were introduced into MgH_(2) to boost the hydrogen storage performance.The refined HEA exhibited superior catalytic activity on MgH_(2).In contrast to additive-free MgH_(2),the initial desorption temperature of the constructed MgH_(2)-HEA composite was reduced from 330.0 to 198.5℃ and a remarkable 51% reduction in the dehydrogenation activation energy was achieved.Besides,the MgH_(2)-HEA composite only required one-twentieth time of that consumed by pure MgH_(2) to absorb 5.0 wt% of H_(2) at 225℃.The synergy between the "hydrogen pumping" effect of Mg_2Ni/Mg_2NiH_4 and Mg_2Co/Mg_2CoH_5 couples,as well as the good dispersion of Fe,Cr and Ti on the surface of MgH_(2) contributed to the enhanced de/hydrogenation performance of the MgH_(2)-HEA composites.This study furnishes important steering for the design and fabrication of multiple transition metal catalysts and may push the commercial application of magnesium-based hydrides one step forward. 展开更多
关键词 Hydrogen storage Magnesium hydride High-entropy alloys CATALYSIS
原文传递
Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH_(2) 被引量:19
5
作者 Zhi-Yu Lu Hai-Jie Yu +5 位作者 Xiong Lu Meng-Chen Song fu-ying wu Jia-Guang Zheng Zhi-Fei Yuan Liu-Ting Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3195-3204,共10页
Magnesium hydride(MgH_(2)),which possesses high hydrogen density of 7.6 wt%,abundant resource and non-toxicity,has captured intense attention as one of the potential hydrogen storage materials.However,the practical ap... Magnesium hydride(MgH_(2)),which possesses high hydrogen density of 7.6 wt%,abundant resource and non-toxicity,has captured intense attention as one of the potential hydrogen storage materials.However,the practical application of Mg/MgH_(2) system is suffering from high thermal stability,sluggish absorption and desorption kinetics.Herein,two-dimensional(2D) vanadium nanosheets(V_(NS)) were successfully prepared via a facile wet chemical ball milling method and proved to be highly effective on improving the hydrogen storage performance of MgH_(2).For instance,the MgH_(2)+7 wt% V_(NS) composite began to release hydrogen at 187.2℃,152 ℃ lower than that of additive-free MgH_(2).At 300℃,6.3 wt% hydrogen was released from the MgH_(2)+7 wt% V_(NS) composite within 10 min.In addition,the fully dehydrogenated sample could absorb hydrogen even at room temperature under hydrogen pressure of 3.2 MPa.X-ray diffractometer(XRD) and transmission electron microscopy(TEM)results confirmed metallic vanadium served as catalytic unit for facilitating the de/rehydrogenation reaction of MgH_(2).This finding presents an example of facile synthesis of two-dimensional(2D) vanadium with excellent catalysis,which may shed light on future design and preparation of highly effective layered catalysts for hydrogen storage and other energy-related areas. 展开更多
关键词 Hydrogen storage Magnesium hydride Two-dimensional vanadium nanosheets Catalytic effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部