Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t...Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.展开更多
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl...Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.展开更多
Petroleum coke was thermally treated on a fixed bed reactor in a temperature range of 1173-1673 K. The changes of the elemental composition and crystalline structure of petroleum coke, with heat treatments as well as ...Petroleum coke was thermally treated on a fixed bed reactor in a temperature range of 1173-1673 K. The changes of the elemental composition and crystalline structure of petroleum coke, with heat treatments as well as the gasification reactivity of the heat-treated petroleum cokes were investigated. The results showed that the petroleum coke was carbonized and grapbitized to a higher degree with increasing heating temperature, while the gasification reactivity decreased. The treatment at temperatures of 1173 and 1473 K significantly enlarged the specific surface area and the pore volume of petroleum coke. Both the specific surface area and the pore volume decreased at 1673 K. An empirical normal distribution function model (NDFM) was found to fit the gasification rates of petroleum coke well. The correlation coefficient of petroleum coke by normal distribution function model at different heat treatment temperatures is between 0.93 and 0.95.展开更多
Opposed multi-burner(OMB)gasification technology is the first large-scale gasification technology developed in China with completely independent intellectual property rights.It has been widely used around the world,in...Opposed multi-burner(OMB)gasification technology is the first large-scale gasification technology developed in China with completely independent intellectual property rights.It has been widely used around the world,involving synthetic ammonia,methanol,ethylene glycol,coal liquefaction,hydrogen production and other fields.This paper summarizes the research and development process of OMB gasification technology from the perspective of the cold model experiment and process simulation,pilotscale study and industrial demonstration.The latest progress of fundamental research in nozzle atomization and dispersion,mixing enhancement of impinging flow,multiscale reaction of different carbonaceous feedstocks,spectral characteristic of impinging flame and particle characteristics inside gasifier,and comprehensive gasification model are reviewed.The latest industrial application progress of ultralarge-scale OMB gasifier and radiant syngas cooler(RSC)combined with quenching chamber OMB gasifier are introduced,and the prospects for the future technical development are proposed as well.展开更多
With the help of Aspen Plus,a two-dimensional unsteady CFD model is developed to simulate the coal gasification process in a fixed bed gasifier.A developed and validated two dimensional CFD model for coal gasification...With the help of Aspen Plus,a two-dimensional unsteady CFD model is developed to simulate the coal gasification process in a fixed bed gasifier.A developed and validated two dimensional CFD model for coal gasification has been used to predict and assess the viability of the syngas generation from coal gasification employing the updraft fixed bed gasifier.The process rate model and the sub-model of gas generation are determined.The particle size variation and char burning during gasification are also taken into account.In order to verify the model and increase the understanding of gasification characteristics,a set of experiments and numerical comparisons have been carried out.The simulated results in the bed are used to predict the composition of syngas and the conversion of carbon.The model proposed in this paper is a promising tool for simulating the coal gasification process in a fixed bed gasifier.展开更多
CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf...CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.展开更多
Gasification is one of the most significant and well-researched pathways to produce energy from biomass among the different options available.It is a conversion through thermo-chemical process that takes place within ...Gasification is one of the most significant and well-researched pathways to produce energy from biomass among the different options available.It is a conversion through thermo-chemical process that takes place within a gasifier,with interconnected factors that have an impact on how well the gasifier works.Gasification of carbonized biomass,which has a variety of effects on both the gasification process and the final product,is a significant method of producing energy from raw biomass that contains a lot of moisture or has non-homogeneous morphology.Although carbonized biomass has the potential to eliminate or significantly reduce tar formation,which is the most difficult aspect of biomass gasifier design and operation,it has not received the attention it merits even though gasification of biomass is a well-known conversion process with extensive research and development spanning all sectors of the process.This review gathers and analyzes the growing number of experimental and numerical modeling approaches in gasification of carbonized biomass based on exact conditions such as type of modeling considerations,feedstock,gasifier,and assessed parameters.The study also provides an overview of various models,such as equilibrium and kinetic rate models and numerical simulations of carbonized biomass gasification schemes based on computational fluid dynamics and Aspen Plus,while comparing the modeling approaches and results for each type of models that are described in the literature.Also,this review encompasses a broad variety of technologies,from laboratory reactors to industrial scale.Overall,this review offers a brief overview of the modeling decisions that must be taken at the beginning of a modeling research.展开更多
Based on some experimental investigations of liquid phase residence time distribution(RTD)in an impinging stream reactor,a two-dimensional plug-flow dispersion model for predicting the liquid phase RTD in the reactor ...Based on some experimental investigations of liquid phase residence time distribution(RTD)in an impinging stream reactor,a two-dimensional plug-flow dispersion model for predicting the liquid phase RTD in the reactor was proposed.The calculation results of the model can be in good agreement with the experimental RTD under different operating conditions.The axial liquid dispersion coefficient increases monotonously with the increasing liquid flux,but is almost independent of gas flux.As the liquid flux and the gas flux increase,the liquid dispersion coefficient of center-to-wall decreases.The axial liquid dispersion coefficient is much larger than that of center-to-wall,which indicates that the liquid RTD is dominated mainly by axial liquid dispersion in the impinging stream reactor.展开更多
基金supported by China National Postdoctoral Program for Innovative Talents (BX20230121)China Postdoctoral Science Foundation (2023M741163)Shanghai Super Postdoctoral Incentive Program (2023741)。
文摘Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.
基金supported by the National Natural Science Foundation of China(21978092).
文摘Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.
文摘Petroleum coke was thermally treated on a fixed bed reactor in a temperature range of 1173-1673 K. The changes of the elemental composition and crystalline structure of petroleum coke, with heat treatments as well as the gasification reactivity of the heat-treated petroleum cokes were investigated. The results showed that the petroleum coke was carbonized and grapbitized to a higher degree with increasing heating temperature, while the gasification reactivity decreased. The treatment at temperatures of 1173 and 1473 K significantly enlarged the specific surface area and the pore volume of petroleum coke. Both the specific surface area and the pore volume decreased at 1673 K. An empirical normal distribution function model (NDFM) was found to fit the gasification rates of petroleum coke well. The correlation coefficient of petroleum coke by normal distribution function model at different heat treatment temperatures is between 0.93 and 0.95.
基金supported by the National Natural Science Foundation of China(21776086,21761132034)。
文摘Opposed multi-burner(OMB)gasification technology is the first large-scale gasification technology developed in China with completely independent intellectual property rights.It has been widely used around the world,involving synthetic ammonia,methanol,ethylene glycol,coal liquefaction,hydrogen production and other fields.This paper summarizes the research and development process of OMB gasification technology from the perspective of the cold model experiment and process simulation,pilotscale study and industrial demonstration.The latest progress of fundamental research in nozzle atomization and dispersion,mixing enhancement of impinging flow,multiscale reaction of different carbonaceous feedstocks,spectral characteristic of impinging flame and particle characteristics inside gasifier,and comprehensive gasification model are reviewed.The latest industrial application progress of ultralarge-scale OMB gasifier and radiant syngas cooler(RSC)combined with quenching chamber OMB gasifier are introduced,and the prospects for the future technical development are proposed as well.
基金The research was supported by the National Key Research and Development Project(2016YFB060040202).
文摘With the help of Aspen Plus,a two-dimensional unsteady CFD model is developed to simulate the coal gasification process in a fixed bed gasifier.A developed and validated two dimensional CFD model for coal gasification has been used to predict and assess the viability of the syngas generation from coal gasification employing the updraft fixed bed gasifier.The process rate model and the sub-model of gas generation are determined.The particle size variation and char burning during gasification are also taken into account.In order to verify the model and increase the understanding of gasification characteristics,a set of experiments and numerical comparisons have been carried out.The simulated results in the bed are used to predict the composition of syngas and the conversion of carbon.The model proposed in this paper is a promising tool for simulating the coal gasification process in a fixed bed gasifier.
基金supported by the National Natural Science Foundation of China(21978092)Chenguang Program by Educational Administration of Shanghai(21CGA35)Yangfan Program by Scientifical Administration of Shanghai(22YF1410300).
文摘CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.
基金support from the project of the National Natural Science Foundation of China(22278142)the social development science and technology tackling roject of 2021“Scientific and Innovative Action Plan of Shanghai”(21DZ1209000).
文摘Gasification is one of the most significant and well-researched pathways to produce energy from biomass among the different options available.It is a conversion through thermo-chemical process that takes place within a gasifier,with interconnected factors that have an impact on how well the gasifier works.Gasification of carbonized biomass,which has a variety of effects on both the gasification process and the final product,is a significant method of producing energy from raw biomass that contains a lot of moisture or has non-homogeneous morphology.Although carbonized biomass has the potential to eliminate or significantly reduce tar formation,which is the most difficult aspect of biomass gasifier design and operation,it has not received the attention it merits even though gasification of biomass is a well-known conversion process with extensive research and development spanning all sectors of the process.This review gathers and analyzes the growing number of experimental and numerical modeling approaches in gasification of carbonized biomass based on exact conditions such as type of modeling considerations,feedstock,gasifier,and assessed parameters.The study also provides an overview of various models,such as equilibrium and kinetic rate models and numerical simulations of carbonized biomass gasification schemes based on computational fluid dynamics and Aspen Plus,while comparing the modeling approaches and results for each type of models that are described in the literature.Also,this review encompasses a broad variety of technologies,from laboratory reactors to industrial scale.Overall,this review offers a brief overview of the modeling decisions that must be taken at the beginning of a modeling research.
基金supported financially by the National Basic Research Program of China(No.2004CB217703)New Century Excellent Talents in University(NCET-05-0413).
文摘Based on some experimental investigations of liquid phase residence time distribution(RTD)in an impinging stream reactor,a two-dimensional plug-flow dispersion model for predicting the liquid phase RTD in the reactor was proposed.The calculation results of the model can be in good agreement with the experimental RTD under different operating conditions.The axial liquid dispersion coefficient increases monotonously with the increasing liquid flux,but is almost independent of gas flux.As the liquid flux and the gas flux increase,the liquid dispersion coefficient of center-to-wall decreases.The axial liquid dispersion coefficient is much larger than that of center-to-wall,which indicates that the liquid RTD is dominated mainly by axial liquid dispersion in the impinging stream reactor.