期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Moderate Fields, Maximum Potential: Achieving High Records with Temperature‑Stable Energy Storage in Lead‑Free BNT‑Based Ceramics 被引量:1
1
作者 Wenjing Shi Leiyang Zhang +7 位作者 Ruiyi Jing Yunyao Huang fukang chen Vladimir Shur Xiaoyong Wei Gang Liu Hongliang Du Li Jin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期184-200,共17页
The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystora... The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field. 展开更多
关键词 BNT Energy storage LEAD-FREE Relaxor ferroelectrics Capacitors
下载PDF
Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy
2
作者 Xiaoyu Cai fukang chen +2 位作者 Bolun Dong Sanbao Lin Chunli Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3180-3192,共13页
Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium all... Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2). 展开更多
关键词 GTA Additive manufacturing AZ91D magnesium alloy MICROSTRUCTURE Mechanical properties
下载PDF
An ultrahigh energy storage efficiency and recoverable density in Bi_(0.5)Na_(0.5)TiO_(3)with the modification of Sr_(0.85)La_(0.1)TiO_(3)via viscous polymer process
3
作者 fukang chen Lishun Yang +7 位作者 Haoran Feng Qin Li Xinyu Zeng Kun Yu Chunlin Song Yan Yan Li Jin Dou Zhang 《Journal of Materiomics》 SCIE CSCD 2024年第3期566-577,共12页
Currently,the development of dielectric ceramic capacitors is restricted by the contradiction between high efficiency and high recoverable density.Therefore,a novel strategy was designed to achieve a su-perior balance... Currently,the development of dielectric ceramic capacitors is restricted by the contradiction between high efficiency and high recoverable density.Therefore,a novel strategy was designed to achieve a su-perior balance between them.Firstly,introducing Sr_(0.85)La_(0.1)TiO_(3)can enhance the content of the weak polar phase(P4bm)to become the main component,which can optimize the relaxor behaviour and improve efficiency.Then,the electric breakdown strength was effectively enhanced by grain refinement and viscous polymer processing.Finally,a high recoverable energy density of~5.3 J/cm^(3)and an excellent efficiency of~92.2%were attained in 0.9Bi_(0.5)Na_(0.5)TiO_(3)-0.1Na_(0.8)Sr_(0.1)NbO_(3)ceramic with the addition of 0.35Sr_(0.85)La_(0.1)TiO_(3)after viscous polymer processing.The piezoelectric force microscope had been applied to prove the high activity of the polar nanoregions and finite element analysis was adopted to explain the reasons for the enhancing electric breakdown strength.In addition,this ceramic exhibits good tem-perature and frequency stability,and a fast discharging rate of 0.11 ms,making it a potential candidate for the actual application. 展开更多
关键词 Lead-free ceramics Energy storage BNT Landau-free energy
原文传递
Achieving high dielectric energy-storage properties through a phase coexistence design and viscous polymer process in BNT-based ceramics
4
作者 Yule Yang Juanjuan Wang +9 位作者 Ruiyi Jing Wenjing Shi Leiyang Zhang Chao Li Xinyu Zeng fukang chen Gang Liu Xiaolian Chao Yan Yan Li Jin 《Journal of Materiomics》 SCIE CSCD 2023年第6期1004-1014,共11页
In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temp... In the last few decades,dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly.But it has a low energy-storage density(Wrec),efficiency(h),and temperature stability.By adding Pb(Mg1/3Nb2/3)O3(PMN)and(Bi0$1Sr0.85)TiO3(BST)to a nonstoichiometric(Bi0$51Na0.5)TiO3(BNT)matrix,the goal is to change the phase transition properties and make the material more relaxor ferroelectric(RFE)by lowering the remnant polarization Pr and keeping the maximum polarization Pmax.A viscous polymer process(VPP)is used to improve the electric breakdown strength,which is also a key part of being able to store energy.By working together,ceramics with the formula 0.79[0.85BNT-0.15PMN]-0.21BST(BP-0.21BST)are made.The phase structure has been changed from a rhombohedral phase to a rhombohedral-tetragonal coexisted phase.This is beneficial for RFE properties and gives a Wrec of 6.45 J/cm^(3) and a h of 90%at 400 kV/cm.Also,the energy-storage property is very temperature stable between 30 and 150C.These results show that process optimization and composition design can be used to improve the energy storage properties,and that the dielectric ceramic materials made can be used in high-powder pulse dielectric capacitors. 展开更多
关键词 BNT ENERGY-STORAGE Charge-discharge Viscous polymer process Relaxor ferroelectric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部