In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uni...In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.展开更多
Cobalt ferrite has problems such as poor impedance matching and high density,which results in unsatisfactory electromagnetic wave(EMW)absorption performance.In this study,the CoFe_(2)O_(4)@C core-shell structure compo...Cobalt ferrite has problems such as poor impedance matching and high density,which results in unsatisfactory electromagnetic wave(EMW)absorption performance.In this study,the CoFe_(2)O_(4)@C core-shell structure composite was synthesized by a two-step hydrothermal method.X-ray diffraction,transmission electron microscopy,Fourier transform infrared spectroscopy,thermogravimetric analysis,and vector network analysis et al.were used to test the structure and EMW absorption properties of CoFe_(2)O_(4)@C composite.The results show that the reflection loss(RL)of the CoFe_(2)O_(4)@C composite reaches the maximum value of25.66 dB at 13.92 GHz,and the effective absorbing band(EAB)is 4.59 GHz(11.20-15.79 GHz)when the carbon mass content is 6.01%.The RL and EAB of CoFe_(2)O_(4)@C composite are increased by 219.55%and 4.59 GHz respectively,and the density is decreased by 20.78%compared with the cobalt ferrite.Such enhanced EMW absorption properties of CoFe_(2)O_(4)@C composite are attributed to the attenuation caused by the strong natural resonance of the cobalt ferrite,moreover,the carbon coating layer adjusts the impedance matching of the composite,and the introduced dipole polarization and interface polarization can cause multiple Debye relaxation processes.展开更多
Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase ...Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase oxygen electrode system and a chlorophyll fluorescence spectrometer were used to determine the photosynthetic characteristics of S. thunbergii seedlings at various light intensities, temperatures, and salinities. The light-saturated net photosynthetic rates, light saturation points, and respiratory rates of germlings were investigated. Results showed that the increase in rate of light saturation point was slow in the first 4 d, rapidly increased from 5 d to 9 d, and then gently increased at the final few days of the 15 d indoor culture period. The photosynthetic rate or respiratory rate of the seedlings rapidly and significantly decreased when the temperature was °C or >28°C. Short-term high- or low-salinity shock had significant effect on the photosynthetic and respiratory rates of the seedlings, specifically at 10 and 50 psu. However, the photosynthetic and respiratory rates recovered to the normal levels after 24 h of recovery period, which demonstrated a powerful ion-transport system of the seedlings. These results provided reference for the artificial breeding of S. thunbergii.展开更多
Sargassum thunbergii is an economically important brown alga that is used as a perferred food for sea cucumber in China. However, reports on the reproductive biology of S. thunbergii are limited. This study observed t...Sargassum thunbergii is an economically important brown alga that is used as a perferred food for sea cucumber in China. However, reports on the reproductive biology of S. thunbergii are limited. This study observed the characteristics of mature receptacles. The effects of different temperatures, light intensities, and photoperiods on the egg release of mature S. thunbergii receptacles were investigated. A liquid-phase oxygen electrode system was used to obtain light saturation and light compensation points of egg and young thalli of S. thunbergii. Results showed that temperature was the key factor for the egg release of mature receptacles. The conditions most conducive to egg release were 20°C to 23°C temperature and 50 μmol photons m-2·s-1 to 200 μmol photons m-2·s-1 light intensity. In addition, the light saturation and compensation points of unfertilized eggs or young thalli at 2 d or 3 d postfertilization ranged from 90 μmol photons m-2·s-1 to 120 μmol photons m-2·s-1 and 14 μmol photons m-2·s-1 to 22 μmol photons m-2·s-1, respectively. The combined results provide a reference for the sporeling culture of S. thunbergii.展开更多
Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However,the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are no...Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However,the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are not fully understood. Here, we find that Derlin-1 and TER94/VCP/p97, components of the endoplasmic reticulum(ER)-associated degradation(ERAD) pathway, restrain intestinal stem cell proliferation to maintain intestinal homeostasis in adult Drosophila. Depleting any of them results in increased stem cell proliferation and midgut homeostasis disruption. Derlin-1 is specifically localized in the ER of progenitors, and its Cterminus is required for its function. Interestingly, we find that increased stem cell proliferation is resulted from elevated ROS levels and activated JNK signaling in Derlin-1-or TER94-deficient progenitors. Further removal of reactive oxygen species(ROS) or inhibition of JNK signaling almost completely suppresses increased stem cell proliferation. Together, these data demonstrate that the ERAD pathway is critical for stem cell proliferation and tissue homeostasis. Thus, we provide insights into our understanding of the mechanisms underlying cellular protein homeostasis maintenance(ER protein quality control) in tissue homeostasis and tumor development.展开更多
基金supported by the State Key Laboratory of Mineral Processing Science and Technology Open Fund(BGRIMM-KJSKL-2017-16)Liaoning Provincial Department of Education Youth Project(LJ2017QL028)Coal Resource Safety Mining and Clean Utilization Engineering Research Center Open Fund(LNTU15KF18)。
文摘In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.
基金supported by the National Natural Science Foundation of China(51372108).
文摘Cobalt ferrite has problems such as poor impedance matching and high density,which results in unsatisfactory electromagnetic wave(EMW)absorption performance.In this study,the CoFe_(2)O_(4)@C core-shell structure composite was synthesized by a two-step hydrothermal method.X-ray diffraction,transmission electron microscopy,Fourier transform infrared spectroscopy,thermogravimetric analysis,and vector network analysis et al.were used to test the structure and EMW absorption properties of CoFe_(2)O_(4)@C composite.The results show that the reflection loss(RL)of the CoFe_(2)O_(4)@C composite reaches the maximum value of25.66 dB at 13.92 GHz,and the effective absorbing band(EAB)is 4.59 GHz(11.20-15.79 GHz)when the carbon mass content is 6.01%.The RL and EAB of CoFe_(2)O_(4)@C composite are increased by 219.55%and 4.59 GHz respectively,and the density is decreased by 20.78%compared with the cobalt ferrite.Such enhanced EMW absorption properties of CoFe_(2)O_(4)@C composite are attributed to the attenuation caused by the strong natural resonance of the cobalt ferrite,moreover,the carbon coating layer adjusts the impedance matching of the composite,and the introduced dipole polarization and interface polarization can cause multiple Debye relaxation processes.
文摘Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase oxygen electrode system and a chlorophyll fluorescence spectrometer were used to determine the photosynthetic characteristics of S. thunbergii seedlings at various light intensities, temperatures, and salinities. The light-saturated net photosynthetic rates, light saturation points, and respiratory rates of germlings were investigated. Results showed that the increase in rate of light saturation point was slow in the first 4 d, rapidly increased from 5 d to 9 d, and then gently increased at the final few days of the 15 d indoor culture period. The photosynthetic rate or respiratory rate of the seedlings rapidly and significantly decreased when the temperature was °C or >28°C. Short-term high- or low-salinity shock had significant effect on the photosynthetic and respiratory rates of the seedlings, specifically at 10 and 50 psu. However, the photosynthetic and respiratory rates recovered to the normal levels after 24 h of recovery period, which demonstrated a powerful ion-transport system of the seedlings. These results provided reference for the artificial breeding of S. thunbergii.
文摘Sargassum thunbergii is an economically important brown alga that is used as a perferred food for sea cucumber in China. However, reports on the reproductive biology of S. thunbergii are limited. This study observed the characteristics of mature receptacles. The effects of different temperatures, light intensities, and photoperiods on the egg release of mature S. thunbergii receptacles were investigated. A liquid-phase oxygen electrode system was used to obtain light saturation and light compensation points of egg and young thalli of S. thunbergii. Results showed that temperature was the key factor for the egg release of mature receptacles. The conditions most conducive to egg release were 20°C to 23°C temperature and 50 μmol photons m-2·s-1 to 200 μmol photons m-2·s-1 light intensity. In addition, the light saturation and compensation points of unfertilized eggs or young thalli at 2 d or 3 d postfertilization ranged from 90 μmol photons m-2·s-1 to 120 μmol photons m-2·s-1 and 14 μmol photons m-2·s-1 to 22 μmol photons m-2·s-1, respectively. The combined results provide a reference for the sporeling culture of S. thunbergii.
基金supported by grants from the National Natural Science Foundation of China (31972893, 92054109 and 31471384)Beijing Municipal Commission of Education (No KZ201910028040)Beijing Natural Science Fundation (No 5162004)。
文摘Adult stem cells are critical for the maintenance of residential tissue homeostasis and functions. However,the roles of cellular protein homeostasis maintenance in stem cell proliferation and tissue homeostasis are not fully understood. Here, we find that Derlin-1 and TER94/VCP/p97, components of the endoplasmic reticulum(ER)-associated degradation(ERAD) pathway, restrain intestinal stem cell proliferation to maintain intestinal homeostasis in adult Drosophila. Depleting any of them results in increased stem cell proliferation and midgut homeostasis disruption. Derlin-1 is specifically localized in the ER of progenitors, and its Cterminus is required for its function. Interestingly, we find that increased stem cell proliferation is resulted from elevated ROS levels and activated JNK signaling in Derlin-1-or TER94-deficient progenitors. Further removal of reactive oxygen species(ROS) or inhibition of JNK signaling almost completely suppresses increased stem cell proliferation. Together, these data demonstrate that the ERAD pathway is critical for stem cell proliferation and tissue homeostasis. Thus, we provide insights into our understanding of the mechanisms underlying cellular protein homeostasis maintenance(ER protein quality control) in tissue homeostasis and tumor development.