Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared...Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared with that,less work has been conducted with analytical modelling.Therefore,in this paper,the authors used an analytical model to study the load transfer behavior of fully grouted rock bolts.To confirm the credibility of this analytical model,an in-situ pull-out test was used to validate this model.There was a close match between the experimental result and the analytical result.Following it,a parametric study was conducted with this analytical model.The influence of coefficients,Young’s modulus of the rock bolt and the diameter of the rock bolt on the load transfer performance of rock bolts was studied.Furthermore,the load distribution along the fully grouted rock bolt was analytically studied.The results show that the axial load in the rock bolt decayed from the loaded end to the free end independent of the pull-out load.However,the trend of the load distribution curve was influenced by the pull-out load.This paper was beneficial for better understanding the load transfer mechanism of fully grouted rock bolts.展开更多
Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I...Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end.展开更多
Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineerin...Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineering background of close-distance seam mining in a coal mine,the reasonable position of the underlying coal seam's stopping line and the support method of the large section roadway during stopping are investigated using feld measurements,similar simulation experiments,and numerical simulations.There are three types of location relationships between the stopping line of the underlying coal seam and the stopping line of the overlying coal seam:"externally staggered with the upper stopping line"(ESUL,stops mining under the overlying goaf),"overlapped with upper stopping line"(OUL),and"internally staggered with the upper stopping line"(ISUL,ISUL-SD for shorter internal staggered distances,ISUL-LD for longer ones).There are diferent stress arch structures in the overlying strata of the above three positions,and the stress arch evolution process exists in the process of ESUL→OUL→ISUL-SD→ISUL-LD:a front and rear double stress arch structure→the front arch gradually decreases→the front arch dies out,and the double arch synthesizes the single arch→the single-arch range expands→the nested double arch.The relationship between the stress arch structure and the position of the stopping line is evaluated as follows:(1)ESUL:the stress concentration in the roof plate of the retracement channel of the underlying coal seam is the highest,because the overburden block of the extensive collapse zone acts directly on the roof plate of the retracement channel,resulting in relative difculties in roof support.(2)OUL:although the retracement channel roof pressure is minimal,the overlying rock structure has the potential for rotation or slippage instability.(3)ISUL-SD:the pressure on the roof of the retracement channel is small and the overburden structure is stable,which is conducive to the safe retraction of the support and not limited by the width of the end-mining coal pillar.(4)ISUL-LD:it is basically the same as the condition of stopping under the non-goaf;however,it has a limitation on the width of the end-mining coal pillar.The location of the stopping line is selected as ISUL-SD,and the retraction process of the self-excavating retraction channel was adopted.A partition asymmetric support scheme which is proven by feld practice is proposed,through a comprehensive analysis of the pre-stress feld simulation of the support scheme,based on the diferent control requirements of the roof above the support and the roof of the retracement channel in the stopping area.This method realizes safe and smooth withdrawal of the support.展开更多
The support of coal roadways is seriously affected by intense dynamic pressures.This can lead to problems with large deformation of the roof and the two side walls of coal roadways.Rapid convergence of the walls and r...The support of coal roadways is seriously affected by intense dynamic pressures.This can lead to problems with large deformation of the roof and the two side walls of coal roadways.Rapid convergence of the walls and roof,a high damage rate to the bolts and cables,or even abrupt roof collapse or rib spalling can occur during the service period of these coal roadways.Analyzing the main support measures used in China leads to a proposed new cable truss supporting system.Thorough study of the entire structure shows the superiority of this design for roadways suffering under dynamic pressure.A corresponding mechanical model of the rock surrounding the cable truss system is described in this paper and formulas for calculating pre-tightening forces of the truss cable,and the minimum anchoring forces,were deduced.The new support system was applied to a typical roadway affected by intensive dynamic pressure that is located in the Xinyuan Coal Mine.The results show that the largest subsidence of the roof was 97 mm,the convergence of the two sides was less than 248 mm,and the average depth of the loose,fractured layer was only 6.12 mm.This proves that the new support system is feasible and effective.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51574243 and 51904302)the Yue Qi Distinguished Scholar Project of China (No. 800015Z1138)+1 种基金China University of Mining and Technology, Beijingthe Fundamental Research Funds for the Central Universities, China (No.800015J6)。
文摘Fully grouted rock bolts have been used in mining industry for many years.Much research has been conducted to evaluate the load transfer behavior of fully grouted rock bolts with experimental programs.However,compared with that,less work has been conducted with analytical modelling.Therefore,in this paper,the authors used an analytical model to study the load transfer behavior of fully grouted rock bolts.To confirm the credibility of this analytical model,an in-situ pull-out test was used to validate this model.There was a close match between the experimental result and the analytical result.Following it,a parametric study was conducted with this analytical model.The influence of coefficients,Young’s modulus of the rock bolt and the diameter of the rock bolt on the load transfer performance of rock bolts was studied.Furthermore,the load distribution along the fully grouted rock bolt was analytically studied.The results show that the axial load in the rock bolt decayed from the loaded end to the free end independent of the pull-out load.However,the trend of the load distribution curve was influenced by the pull-out load.This paper was beneficial for better understanding the load transfer mechanism of fully grouted rock bolts.
基金This paper was funded by the following:National Natural Science Foundation of China(51974317,51904302,52034009)Yue Qi Distinguished Scholar Project(800015Z1179,800015Z1138)China University of Mining and Technology(Beijing)and the Fundamental Research Funds for the Central Universities(2020YQNY06).
文摘Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end.
基金supported by the National Natural Science Foundation of China(52004286)the Fundamental Research Funds for the Central Universities(2022XJNY02)+3 种基金the National Natural Science Foundation of China(51974317,52074296)the China Postdoctoral Science Foundation(2020T130701,2019M650895)the Fundamental Research Funds for the Central Universities(2022YJSNY18,2022YJSNY09)all of which were gratefully acknowledged.
文摘Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineering background of close-distance seam mining in a coal mine,the reasonable position of the underlying coal seam's stopping line and the support method of the large section roadway during stopping are investigated using feld measurements,similar simulation experiments,and numerical simulations.There are three types of location relationships between the stopping line of the underlying coal seam and the stopping line of the overlying coal seam:"externally staggered with the upper stopping line"(ESUL,stops mining under the overlying goaf),"overlapped with upper stopping line"(OUL),and"internally staggered with the upper stopping line"(ISUL,ISUL-SD for shorter internal staggered distances,ISUL-LD for longer ones).There are diferent stress arch structures in the overlying strata of the above three positions,and the stress arch evolution process exists in the process of ESUL→OUL→ISUL-SD→ISUL-LD:a front and rear double stress arch structure→the front arch gradually decreases→the front arch dies out,and the double arch synthesizes the single arch→the single-arch range expands→the nested double arch.The relationship between the stress arch structure and the position of the stopping line is evaluated as follows:(1)ESUL:the stress concentration in the roof plate of the retracement channel of the underlying coal seam is the highest,because the overburden block of the extensive collapse zone acts directly on the roof plate of the retracement channel,resulting in relative difculties in roof support.(2)OUL:although the retracement channel roof pressure is minimal,the overlying rock structure has the potential for rotation or slippage instability.(3)ISUL-SD:the pressure on the roof of the retracement channel is small and the overburden structure is stable,which is conducive to the safe retraction of the support and not limited by the width of the end-mining coal pillar.(4)ISUL-LD:it is basically the same as the condition of stopping under the non-goaf;however,it has a limitation on the width of the end-mining coal pillar.The location of the stopping line is selected as ISUL-SD,and the retraction process of the self-excavating retraction channel was adopted.A partition asymmetric support scheme which is proven by feld practice is proposed,through a comprehensive analysis of the pre-stress feld simulation of the support scheme,based on the diferent control requirements of the roof above the support and the roof of the retracement channel in the stopping area.This method realizes safe and smooth withdrawal of the support.
基金provided by the National Basic Research Program of China (No. 2010CB226802)the Fundamental Research Funds for the Central Universities (No. 2010YZ02)the State Key Laboratory of Coal Resources and Safe Mining (No.SKLCRSM 10B08)
文摘The support of coal roadways is seriously affected by intense dynamic pressures.This can lead to problems with large deformation of the roof and the two side walls of coal roadways.Rapid convergence of the walls and roof,a high damage rate to the bolts and cables,or even abrupt roof collapse or rib spalling can occur during the service period of these coal roadways.Analyzing the main support measures used in China leads to a proposed new cable truss supporting system.Thorough study of the entire structure shows the superiority of this design for roadways suffering under dynamic pressure.A corresponding mechanical model of the rock surrounding the cable truss system is described in this paper and formulas for calculating pre-tightening forces of the truss cable,and the minimum anchoring forces,were deduced.The new support system was applied to a typical roadway affected by intensive dynamic pressure that is located in the Xinyuan Coal Mine.The results show that the largest subsidence of the roof was 97 mm,the convergence of the two sides was less than 248 mm,and the average depth of the loose,fractured layer was only 6.12 mm.This proves that the new support system is feasible and effective.