The electrochemical mechanism of the reaction between Fe-C melts and CaO-SiO2-Al2O3-FeOx slag systems has been carried out. The experimental results suggest that the final content of carbon in melt increases as the pa...The electrochemical mechanism of the reaction between Fe-C melts and CaO-SiO2-Al2O3-FeOx slag systems has been carried out. The experimental results suggest that the final content of carbon in melt increases as the partial oxygen pressure of gas decreases no matter whether there is electronic conductor or not. However, the final content of carbon in the system with electronic conductor is much lower than that without electronic conductor. It can be deduced that the transfer ability of oxygen in slag is dominated by electrons. When an electronic conductor exists, an easy pathway for the electrons is provided and the oxygen transfer rate is accelerated.展开更多
By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing ...By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing transition metal oxides (such as TiO2 and Fe2O3). So electronic conduction in the slag increases. Finally, it led to the increment of the decarburization reaction rate between slag and Fe-C droplet, and mass fraction of carbon remaining indroplet decreases to a lower level.展开更多
In the ZrO_2-based ceramic systems doped with different oxides (Y_(2)O_3, MgO and Al_(2)O_3), the behaviors of electronic and ionic conductivity have been investigated by the quantum chemical SCF-X_α-SW method. The r...In the ZrO_2-based ceramic systems doped with different oxides (Y_(2)O_3, MgO and Al_(2)O_3), the behaviors of electronic and ionic conductivity have been investigated by the quantum chemical SCF-X_α-SW method. The results of the electronic energy spectra and local state density of atoms show that, for the ZrO_2 system doped with Al_2O_3, the energy gap near the Fermi energy level becomes smaller, which implies that the electronic conductivity increases. Since the binding energy between Al and O atoms is increased, the energy for oxygen vacancy migrating is enhanced and the ionic conductivity decreases. In the M_xO_y-doped ZrO_2 systems, due to the doping effect of Al_2O_3, MgO and Y_2O_3, the ionic conductivity increases successively, and the electronic conductivity decreases successively. The cal- culation results are in agreement with that of references and experience.展开更多
文摘The electrochemical mechanism of the reaction between Fe-C melts and CaO-SiO2-Al2O3-FeOx slag systems has been carried out. The experimental results suggest that the final content of carbon in melt increases as the partial oxygen pressure of gas decreases no matter whether there is electronic conductor or not. However, the final content of carbon in the system with electronic conductor is much lower than that without electronic conductor. It can be deduced that the transfer ability of oxygen in slag is dominated by electrons. When an electronic conductor exists, an easy pathway for the electrons is provided and the oxygen transfer rate is accelerated.
文摘By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing transition metal oxides (such as TiO2 and Fe2O3). So electronic conduction in the slag increases. Finally, it led to the increment of the decarburization reaction rate between slag and Fe-C droplet, and mass fraction of carbon remaining indroplet decreases to a lower level.
文摘In the ZrO_2-based ceramic systems doped with different oxides (Y_(2)O_3, MgO and Al_(2)O_3), the behaviors of electronic and ionic conductivity have been investigated by the quantum chemical SCF-X_α-SW method. The results of the electronic energy spectra and local state density of atoms show that, for the ZrO_2 system doped with Al_2O_3, the energy gap near the Fermi energy level becomes smaller, which implies that the electronic conductivity increases. Since the binding energy between Al and O atoms is increased, the energy for oxygen vacancy migrating is enhanced and the ionic conductivity decreases. In the M_xO_y-doped ZrO_2 systems, due to the doping effect of Al_2O_3, MgO and Y_2O_3, the ionic conductivity increases successively, and the electronic conductivity decreases successively. The cal- culation results are in agreement with that of references and experience.