In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel co...In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company.This study utilizes numerical simulation method,establishes themathematicalmodels of flow,combustion andNOX generation combustion process in the furnace and analyzes the heat transfer process and NOX generation in the furnace under different air oxygen content and different wind ratio.The research results show that with the increase of oxygen content in the air,the combustion temperature in the furnace rises significantly,and the emission concentration of NOX increases.Furthermore,the NOX emission concentration is related to the proportion of primary and secondary air.展开更多
To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size...To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag.The temperature field and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions,and the effects of operating conditions such as slag trench inclination,high-temperature slag inlet flow rate,and inlet temperature are investigated.The results show that the flow rate of high-temperature slag is related to the slope of the slag trench,the greater the slope of the slag trench,the higher the flow rate of high-temperature slag,in which the highest average speed can reach 2.23 m/s when the slope is 8%;changing the inlet flow rate,flowing through the slag trench,the high-temperature slag reaches the highest flow rate at the same position,the overall flow rate changes tend to rise first and then decrease,and the greater the inlet flow rate,the higher the temperature change of high-temperature slag.The higher the inlet flow rate,the higher the temperature change of high-temperature slag,the higher the temperature of high-temperature slag out of the slag trench;the higher the inlet temperature,the higher the overall flow rate of high-temperature slag,and the position of the highest flow rate is relatively backward.展开更多
基金Supported by the National Natural Science Foundation of China(52330003).
文摘In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company.This study utilizes numerical simulation method,establishes themathematicalmodels of flow,combustion andNOX generation combustion process in the furnace and analyzes the heat transfer process and NOX generation in the furnace under different air oxygen content and different wind ratio.The research results show that with the increase of oxygen content in the air,the combustion temperature in the furnace rises significantly,and the emission concentration of NOX increases.Furthermore,the NOX emission concentration is related to the proportion of primary and secondary air.
文摘To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag.The temperature field and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions,and the effects of operating conditions such as slag trench inclination,high-temperature slag inlet flow rate,and inlet temperature are investigated.The results show that the flow rate of high-temperature slag is related to the slope of the slag trench,the greater the slope of the slag trench,the higher the flow rate of high-temperature slag,in which the highest average speed can reach 2.23 m/s when the slope is 8%;changing the inlet flow rate,flowing through the slag trench,the high-temperature slag reaches the highest flow rate at the same position,the overall flow rate changes tend to rise first and then decrease,and the greater the inlet flow rate,the higher the temperature change of high-temperature slag.The higher the inlet flow rate,the higher the temperature change of high-temperature slag,the higher the temperature of high-temperature slag out of the slag trench;the higher the inlet temperature,the higher the overall flow rate of high-temperature slag,and the position of the highest flow rate is relatively backward.