期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Analysis of CO_2 utilization into synthesis gas based on solar thermochemical CH_4-reforming 被引量:5
1
作者 Bachirou guene Lougou Yong Shuai +3 位作者 gédéon chaffa Huang Xing Heping Tan Huibin du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期61-72,共12页
In this study, the solar thermochemical reactor performance for CO_2 utilization into synthesis gas(H_2+ CO) based on CH_4 reforming process was investigated in the context of carbon capture and utilization(CCU) techn... In this study, the solar thermochemical reactor performance for CO_2 utilization into synthesis gas(H_2+ CO) based on CH_4 reforming process was investigated in the context of carbon capture and utilization(CCU) technologies. The P1 radiation heat transfer model is adopted to establish the heat and mass transfer model coupled with thermochemical reaction kinetics. The reactor thermal behavior with direct heat transfer between gaseous reactant and products evolution and the effects of different structural parameters were evaluated. It was found that the reactor has the potential to utilize by ~60% of CO_2 captured with 40% of CH_4 co-fed into syngas(72.9% of H_2 and 27.1% of CO) at 741.31 k W/mof incident radiation heat flux. However, the solar irradiance heat flux and temperature distribution were found to significantly affect the reactant species conversion efficiency and syngas production. The chemical reaction is mainly driven by the thermal energy and higher species conversion into syngas was observed when the temperature distribution at the inner cavity of the reactor was more uniform. Designed a solar thermochemical reactor able to volumetric store concentrated irradiance could highly improve CCU technologies for producing energy-rich chemicals. Besides, the mixture gas inlet velocity, operating pressure and CO_2/CH_4 feeding ratio were crucial to determining the efficiency of CO_2 utilization to solar fuels. Catalytic CO_2-reforming of CH_4 to chemical energy is a promising strategy for an efficient utilization of CO_2 as a renewable carbon source. 展开更多
关键词 THERMOCHEMICAL reactor CO2 UTILIZATION Radiation FLUX and temperature distribution CH4-reforming SYNGAS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部