Since 2000, the French National Radioactive Waste Management Agency (ANDRA) has been constructing an Underground Research Laboratory (URL) at Bure (east of the Paris Basin) to perform experiments in order to obt...Since 2000, the French National Radioactive Waste Management Agency (ANDRA) has been constructing an Underground Research Laboratory (URL) at Bure (east of the Paris Basin) to perform experiments in order to obtain in situ data necessary to demonstrate the feasibility of geological repository in the Callovo- Oxfordian claystone. An important experimental program is planned to characterize the response of the rock to different drift construction methods, Before 2008, at the main level of the laboratory, most of the drifts were excavated using pneumatic hammer and supported with rock bolts, sliding steel arches and fiber shotcrete. Other techniques, such as road header techniques, stiff and flexible supports, have also been used to characterize their impacts. The drift network is developed following the in situ major stresses. The parallel drifts are separated enough so as they can be considered independently when their hydromechanical (HM) behaviors are compared. Mine-by experiments have been performed to measure the HM response of the rock and the mechanical loading applied to the support system due to the digging and after excavation. Drifts exhibit extensional (mode I) and shear fractures (modes II and III) induced by excavation works. The extent of the induced fracture networks depends on the drift orientation versus the in situ stress field. This paper describes the drift convergence and deformation in the surrounding rock walls as function of time and the impact of different support methods on the rock mass behavior. An observation based method is finally applied to distinguish the instantaneous and time-dependent parts of the rock mass deformation around the drifts.展开更多
Within the framework of feasibility studies for a reversible, deep geological repository of high-and intermediate-level long-lived radioactive waste(HLW, IL-LLW), the French National Radioactive Waste Management Agenc...Within the framework of feasibility studies for a reversible, deep geological repository of high-and intermediate-level long-lived radioactive waste(HLW, IL-LLW), the French National Radioactive Waste Management Agency(Andra) is investigating the Callovo-Oxfordian(COx) formation near Bure(northeast part of France) as a potential host rock for the repository. The hydro-mechanical(HM) behaviour is an important issue to design and optimise different components of the disposal such as shaft, ramp, drift,and waste package disposal facilities. Over the past 20 years, a large number of laboratory experiments have been carried out to characterise and understand the HM behaviours of COx claystones. At the beginning, samples came from deep boreholes drilled at the ground surface with oil base mud. From2000 onwards, with the launch of the construction of the Meuse/Haute-Marne Underground Research Laboratory(MHM URL), most samples have been extracted from a large number of air drilled boreholes in the URL. In parallel, various constitutive models have been developed for modelling. The thermohydro-mechanical(THM) behaviours of the COx claystones were investigated under different repository conditions. Core samples are subjected to a complex HM loading path before testing, due to drilling, conditioning and preparation. Various kinds of effects on the characteristics of the claystones are highlighted and discussed, and the procedures for core extraction and packaging as well as a systematic sample preparation protocol are proposed in order to minimise the uncertainties on test results. The representativeness of the test results is also addressed with regard to the in situ rock mass.展开更多
文摘Since 2000, the French National Radioactive Waste Management Agency (ANDRA) has been constructing an Underground Research Laboratory (URL) at Bure (east of the Paris Basin) to perform experiments in order to obtain in situ data necessary to demonstrate the feasibility of geological repository in the Callovo- Oxfordian claystone. An important experimental program is planned to characterize the response of the rock to different drift construction methods, Before 2008, at the main level of the laboratory, most of the drifts were excavated using pneumatic hammer and supported with rock bolts, sliding steel arches and fiber shotcrete. Other techniques, such as road header techniques, stiff and flexible supports, have also been used to characterize their impacts. The drift network is developed following the in situ major stresses. The parallel drifts are separated enough so as they can be considered independently when their hydromechanical (HM) behaviors are compared. Mine-by experiments have been performed to measure the HM response of the rock and the mechanical loading applied to the support system due to the digging and after excavation. Drifts exhibit extensional (mode I) and shear fractures (modes II and III) induced by excavation works. The extent of the induced fracture networks depends on the drift orientation versus the in situ stress field. This paper describes the drift convergence and deformation in the surrounding rock walls as function of time and the impact of different support methods on the rock mass behavior. An observation based method is finally applied to distinguish the instantaneous and time-dependent parts of the rock mass deformation around the drifts.
文摘Within the framework of feasibility studies for a reversible, deep geological repository of high-and intermediate-level long-lived radioactive waste(HLW, IL-LLW), the French National Radioactive Waste Management Agency(Andra) is investigating the Callovo-Oxfordian(COx) formation near Bure(northeast part of France) as a potential host rock for the repository. The hydro-mechanical(HM) behaviour is an important issue to design and optimise different components of the disposal such as shaft, ramp, drift,and waste package disposal facilities. Over the past 20 years, a large number of laboratory experiments have been carried out to characterise and understand the HM behaviours of COx claystones. At the beginning, samples came from deep boreholes drilled at the ground surface with oil base mud. From2000 onwards, with the launch of the construction of the Meuse/Haute-Marne Underground Research Laboratory(MHM URL), most samples have been extracted from a large number of air drilled boreholes in the URL. In parallel, various constitutive models have been developed for modelling. The thermohydro-mechanical(THM) behaviours of the COx claystones were investigated under different repository conditions. Core samples are subjected to a complex HM loading path before testing, due to drilling, conditioning and preparation. Various kinds of effects on the characteristics of the claystones are highlighted and discussed, and the procedures for core extraction and packaging as well as a systematic sample preparation protocol are proposed in order to minimise the uncertainties on test results. The representativeness of the test results is also addressed with regard to the in situ rock mass.