On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
本研究利用生物信息学分析AP-4与胃癌患者临床病理信息的相关性,根据GenBank中人AP-4基因cDNA序列设计并合成特异性引物,以胃癌细胞总RNA逆转录的cDNA为模板,利用高保真酶扩增AP-4基因CDS (Coding DNA sequence)序列并构建入pcDNA3.1+载...本研究利用生物信息学分析AP-4与胃癌患者临床病理信息的相关性,根据GenBank中人AP-4基因cDNA序列设计并合成特异性引物,以胃癌细胞总RNA逆转录的cDNA为模板,利用高保真酶扩增AP-4基因CDS (Coding DNA sequence)序列并构建入pcDNA3.1+载体,并通过限制性内切酶酶切分析和测序法进行进一步验证;脂质体法将AP-4重组表达载体及对照pcDNA3.1+载体转染胃癌细胞,qRT-PCR(Quantitative real time polymerase chain reaction)和Western blotting检测分别检测AP-4在m RNA和蛋白水平的表达。生物信息学分析发现,AP-4的表达与胃癌分期及预后显著相关;酶切及测序分析表明,转录因子AP-4真核表达载体构建成功,并能够在胃癌细胞中实现转录和蛋白水平的高效表达。此研究为深入研究转录因子AP-4在胃癌等肿瘤发生发展中的作用及分子机制奠定了基础。展开更多
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
文摘本研究利用生物信息学分析AP-4与胃癌患者临床病理信息的相关性,根据GenBank中人AP-4基因cDNA序列设计并合成特异性引物,以胃癌细胞总RNA逆转录的cDNA为模板,利用高保真酶扩增AP-4基因CDS (Coding DNA sequence)序列并构建入pcDNA3.1+载体,并通过限制性内切酶酶切分析和测序法进行进一步验证;脂质体法将AP-4重组表达载体及对照pcDNA3.1+载体转染胃癌细胞,qRT-PCR(Quantitative real time polymerase chain reaction)和Western blotting检测分别检测AP-4在m RNA和蛋白水平的表达。生物信息学分析发现,AP-4的表达与胃癌分期及预后显著相关;酶切及测序分析表明,转录因子AP-4真核表达载体构建成功,并能够在胃癌细胞中实现转录和蛋白水平的高效表达。此研究为深入研究转录因子AP-4在胃癌等肿瘤发生发展中的作用及分子机制奠定了基础。