To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differ...To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel.展开更多
In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was ev...In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was evaluated by in vitro static and dynamic adsorption tests. The results show that these adsorbents have excellent adsorption efficiency and capacity. Among the eight ligands, trimethylamine (TMA), triethylamine (TEA) and 1,6- hexanediamine (HDA) showed the highest adsorption capacity. The adsorption equilibrium can be achieved in half an hour, and the adsorption percentage of bilirubin was up to 80%. Static electricity and hydrophobie interaction played the main role in bilirubin adsorption, and the adsorption was found to match the monolayer model. The excellent adsorption of these adsorbents indicates their potential in clinical treatment.展开更多
Objective: Cell and platelet attachment on the multiwalled carbon nanotubes (MWCNTs) were studied by ion implantation. Methods: NH2 ion implantation was performed at the energy of 30 keV with the fluence of 1 x 10...Objective: Cell and platelet attachment on the multiwalled carbon nanotubes (MWCNTs) were studied by ion implantation. Methods: NH2 ion implantation was performed at the energy of 30 keV with the fluence of 1 x 1016 ions/era2 at room temperature. Results: The cell attachment tests showed interesting results in that the number of the platclets adhering on the surface of the MWCNTs was reduced significantly after NH2 ion implantation, whereas, mouse fibroblast cells (L929) cultured on NH2 ion implanted MWCNTs displayed higher cell-viability, proliferation, and stretching compared with MWCNTs. Conclusion: No appreciable change in the tensile strength and the optical transmittance of the implanted samples was observed. X-ray photoelectron spectroscopy (XPS) analysis showed that NH2 ion implantation caused the formation of new N-containing groups.展开更多
The surface of medical polymethylmethacrylate intraocular lens was treated by F^(+) ion implantation at 80 keV with various doses.Hydrophobicity test showed that contact angle was increased from 68.5ºto 83.5º...The surface of medical polymethylmethacrylate intraocular lens was treated by F^(+) ion implantation at 80 keV with various doses.Hydrophobicity test showed that contact angle was increased from 68.5ºto 83.5ºwith increasing dose.No appreciable changes in optical transparency and tensile strength were observed.X-ray photoelectron spectroscopy and electron spin resonance analysis indicated that F+ion implantation broke some original O-containing groups to form some new C-F bond and radicals on the surface.展开更多
In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is graf...In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.展开更多
Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetics and pharmaceuticals such as hair and skin care products. However, current sy...Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetics and pharmaceuticals such as hair and skin care products. However, current synthetic approaches for ceramide are tedious and time-consuming for industrial applications. Therefore, it is desirable to find an alternative cost-efficient and highly-yield method for obtaining the valuable products. In present study, the potential of producing ceramide through enzymatic hydrolysis of sphingomyelin with enzyme irradiated by 808 nm light has been studied. With enzyme irradiated by 808 nm light, its activity can be enhanced and reaction speed can be increased significantly.展开更多
The study used a naturally occurring crosslinking reagent-genipin to chemically modify acellular bovine pericardium, prepare cardiac valve tissue engineering scaffold material,and evaluated genipin crosslinked acellul...The study used a naturally occurring crosslinking reagent-genipin to chemically modify acellular bovine pericardium, prepare cardiac valve tissue engineering scaffold material,and evaluated genipin crosslinked acellular matrix of bovine pericardium by investigating the physical and chemical properties of the tissues, such as the surface properties, crosslinking characteristics, mechanical properties, resistance to enzymatic capacity in vitro, and hemolysis tests. The results showed that acellular bovine pericardium matrix erosslinked with genipin was strong hydrophilicity, high crosslinking index, and stable structure, which can maintain good mechanical properties. As a kind of scaffold material for valve tissue engineering, it has wide application prospect.展开更多
Objective: To investigate binding and release of vascular endothelial growth factor (VEGF) and its effect on adhesion and proliferation of endothelial cells (ECs) in acellular fresh specimens of bovine pericardiu...Objective: To investigate binding and release of vascular endothelial growth factor (VEGF) and its effect on adhesion and proliferation of endothelial cells (ECs) in acellular fresh specimens of bovine pericardiums, which were modified by heparinization. Methods: Cross-linked aeellular fresh specimens of bovine perieardiums were heparinized by three methods: (1) heparinizcd N-(3-diinethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) treated acellular tissue samples; (2) heparinized poly(ethyleneimine) (PEI) treated acellular tissue samples; (3) heparinized EDC-PEI treated aeellular tissue samples. Controlled release of VEGF and its effect on adhesion and proliferation of ECs was evaluated. Results: In the present study, binding and release of VEGF had better performance in heparinized EDC-PEI treated group, compared with heparinized EDC-alone treated group and heparinized PEI -alone group. We could observe enhanced ability to adhesion and proliferation via modest moisture and effective controlled binding and release of VEGF. Conclusion: Binding of VEGF in heparinized EDC treated group was stable, while reiease of VEGF in heparinized treated group was adjusted freely. Interestingly, controlled binding and release of VEGF could exert beneficial effect on adhesion and proliferation of ECs in heparinized EDC-PEI treated group.展开更多
The aim of this study was to evaluate the crosslinking effect of a naturally crosslinking reagent-procyanidins (PA)-on the materials of bioprosthetic heart valves. After fixing bovine pericardial tissues by procyani...The aim of this study was to evaluate the crosslinking effect of a naturally crosslinking reagent-procyanidins (PA)-on the materials of bioprosthetic heart valves. After fixing bovine pericardial tissues by procyanidins, crosslikng characteristics, mechanical properties, in vitro enzymatic degradation resistance, the hydrophilicity and hemolysis tests were examined. The results showed that the fixation of biological tissue with glutaraldehyde (GA) or procyanidins increased its denaturation temperature, the surface hydrophilieity and mechanical properties as well as in vitro enzymatic degradation resistance. There were no significant differences in denaturation temperature, mechanical properties, the hydrophilicity and the in vitro enzymatic degradation between the glutaraldehyde and procyanidins fixed tissues. However, the ultimate tensile strength of the procyanidins fixed tissues was significantly superior to the glutaraldehyde fixed tissues. The hemolysis tests showed that hemolysis rate of the proeyanidins fixed tissues was lower than that of the glutaraldehyde fixed tissues. This study shows that procyanidins can crosslink which bovine pericardiaa effectively without toxicity. Our results suggest that this method might be a useful approach for the preparation of bioprosthetic heart valve.展开更多
The administration of combination products in U.S.Food and Drug Administration(FDA)are analyzed and summarized in this paper.Furthermore,the technical evaluation on drug-medical device in the State Food and Drug Admin...The administration of combination products in U.S.Food and Drug Administration(FDA)are analyzed and summarized in this paper.Furthermore,the technical evaluation on drug-medical device in the State Food and Drug Administration of China(SFDA)is also illustrated.Meanwhile,this paper discusses how to promote the development of drug-medical device in the administration and technical evaluation.展开更多
Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared...Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle assays, platelet-adhesion and hemolytic rate assays. Results: The results showed that the two MWCNTs had a similar surface topography and MWCNTs-OH were functionalized with hydroxyl groups on their surfaces. Water contact angle assays indicated that MWCNTs were hydrophobic materials, whereas MWCNTs-OH was hydrophilic. The platelet-adhesion assays displayed that the platelet-adhesion rate of MWCNTs-OH was much lower than MWCNTs. The hemolytic rate assays showed that the hemolytic rates of both MWCNTs were lower than the standard value of 5%. Conclusion: MWCNTs-OH shows superior anticoagulant capacity over MWCNTs. Both MWCNTs and MWCNTs-OH are nonhemolytic materials.展开更多
基金The Nattional Key Scientific Program-Nanoscience and Nanotechnologygrant number:2009CB930000
文摘To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel.
文摘In the present study we prepared macroporous polyvinyl alcohol beads. A series of bilirubin adsorbents were generated by immobilization of eight amine agents to the beads as ligands. The adsorption of bilirubin was evaluated by in vitro static and dynamic adsorption tests. The results show that these adsorbents have excellent adsorption efficiency and capacity. Among the eight ligands, trimethylamine (TMA), triethylamine (TEA) and 1,6- hexanediamine (HDA) showed the highest adsorption capacity. The adsorption equilibrium can be achieved in half an hour, and the adsorption percentage of bilirubin was up to 80%. Static electricity and hydrophobie interaction played the main role in bilirubin adsorption, and the adsorption was found to match the monolayer model. The excellent adsorption of these adsorbents indicates their potential in clinical treatment.
基金National Natural Science Foundation of China grant number: 51272176 and 11075116+3 种基金National Basic Research Program of China (973 program) grant number: 2012CB933604The Open Research Fund of the State Key Laboratory of Bioelectronics, Southeast Universitythe Key Laboratory of Beam Technology and Material Modification of the Ministry of Education,Beijing Normal University, China
文摘Objective: Cell and platelet attachment on the multiwalled carbon nanotubes (MWCNTs) were studied by ion implantation. Methods: NH2 ion implantation was performed at the energy of 30 keV with the fluence of 1 x 1016 ions/era2 at room temperature. Results: The cell attachment tests showed interesting results in that the number of the platclets adhering on the surface of the MWCNTs was reduced significantly after NH2 ion implantation, whereas, mouse fibroblast cells (L929) cultured on NH2 ion implanted MWCNTs displayed higher cell-viability, proliferation, and stretching compared with MWCNTs. Conclusion: No appreciable change in the tensile strength and the optical transmittance of the implanted samples was observed. X-ray photoelectron spectroscopy (XPS) analysis showed that NH2 ion implantation caused the formation of new N-containing groups.
基金Supported by the Outstanding Youth Teacher Foundation,the Ministry of Education of Chinain part by the Natural Science Foundation of Tianjin of Chinain part by the State Key Laboratory of Surface Modification by Three Beam,Dalian University of Technology.
文摘The surface of medical polymethylmethacrylate intraocular lens was treated by F^(+) ion implantation at 80 keV with various doses.Hydrophobicity test showed that contact angle was increased from 68.5ºto 83.5ºwith increasing dose.No appreciable changes in optical transparency and tensile strength were observed.X-ray photoelectron spectroscopy and electron spin resonance analysis indicated that F+ion implantation broke some original O-containing groups to form some new C-F bond and radicals on the surface.
基金National Natural Science of Foundation of Chinagrant number:81070716
文摘In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.
基金supported by Sino-Danish Scientific Co-operation project
文摘Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetics and pharmaceuticals such as hair and skin care products. However, current synthetic approaches for ceramide are tedious and time-consuming for industrial applications. Therefore, it is desirable to find an alternative cost-efficient and highly-yield method for obtaining the valuable products. In present study, the potential of producing ceramide through enzymatic hydrolysis of sphingomyelin with enzyme irradiated by 808 nm light has been studied. With enzyme irradiated by 808 nm light, its activity can be enhanced and reaction speed can be increased significantly.
基金National High-tech Research and Development Program(836 Prgoram) of Chinagrant number:2007AA02Z444+1 种基金National BasicProgram of China (973 Program)grant number:2009CB930000
文摘The study used a naturally occurring crosslinking reagent-genipin to chemically modify acellular bovine pericardium, prepare cardiac valve tissue engineering scaffold material,and evaluated genipin crosslinked acellular matrix of bovine pericardium by investigating the physical and chemical properties of the tissues, such as the surface properties, crosslinking characteristics, mechanical properties, resistance to enzymatic capacity in vitro, and hemolysis tests. The results showed that acellular bovine pericardium matrix erosslinked with genipin was strong hydrophilicity, high crosslinking index, and stable structure, which can maintain good mechanical properties. As a kind of scaffold material for valve tissue engineering, it has wide application prospect.
文摘Objective: To investigate binding and release of vascular endothelial growth factor (VEGF) and its effect on adhesion and proliferation of endothelial cells (ECs) in acellular fresh specimens of bovine pericardiums, which were modified by heparinization. Methods: Cross-linked aeellular fresh specimens of bovine perieardiums were heparinized by three methods: (1) heparinizcd N-(3-diinethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) treated acellular tissue samples; (2) heparinized poly(ethyleneimine) (PEI) treated acellular tissue samples; (3) heparinized EDC-PEI treated aeellular tissue samples. Controlled release of VEGF and its effect on adhesion and proliferation of ECs was evaluated. Results: In the present study, binding and release of VEGF had better performance in heparinized EDC-PEI treated group, compared with heparinized EDC-alone treated group and heparinized PEI -alone group. We could observe enhanced ability to adhesion and proliferation via modest moisture and effective controlled binding and release of VEGF. Conclusion: Binding of VEGF in heparinized EDC treated group was stable, while reiease of VEGF in heparinized treated group was adjusted freely. Interestingly, controlled binding and release of VEGF could exert beneficial effect on adhesion and proliferation of ECs in heparinized EDC-PEI treated group.
基金National High Technology Research and Development Program (836 Program)grant number:2007AA02Z444+1 种基金National BasicResearch Program of Chinagrant number:2009CB930000
文摘The aim of this study was to evaluate the crosslinking effect of a naturally crosslinking reagent-procyanidins (PA)-on the materials of bioprosthetic heart valves. After fixing bovine pericardial tissues by procyanidins, crosslikng characteristics, mechanical properties, in vitro enzymatic degradation resistance, the hydrophilicity and hemolysis tests were examined. The results showed that the fixation of biological tissue with glutaraldehyde (GA) or procyanidins increased its denaturation temperature, the surface hydrophilieity and mechanical properties as well as in vitro enzymatic degradation resistance. There were no significant differences in denaturation temperature, mechanical properties, the hydrophilicity and the in vitro enzymatic degradation between the glutaraldehyde and procyanidins fixed tissues. However, the ultimate tensile strength of the procyanidins fixed tissues was significantly superior to the glutaraldehyde fixed tissues. The hemolysis tests showed that hemolysis rate of the proeyanidins fixed tissues was lower than that of the glutaraldehyde fixed tissues. This study shows that procyanidins can crosslink which bovine pericardiaa effectively without toxicity. Our results suggest that this method might be a useful approach for the preparation of bioprosthetic heart valve.
文摘The administration of combination products in U.S.Food and Drug Administration(FDA)are analyzed and summarized in this paper.Furthermore,the technical evaluation on drug-medical device in the State Food and Drug Administration of China(SFDA)is also illustrated.Meanwhile,this paper discusses how to promote the development of drug-medical device in the administration and technical evaluation.
基金National Natural Science Foundation of Chinagrant number:11075116 and 51272176+3 种基金National Basic Research Program of China(973 Program)grant number:2012CB933604Open Research Fund of the State Key Laboratory of Bioelectronics,Southeast Universitythe Key Laboratory of Beam Technology and Material Modification of the Ministry of Education,Beijing Normal University
文摘Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle assays, platelet-adhesion and hemolytic rate assays. Results: The results showed that the two MWCNTs had a similar surface topography and MWCNTs-OH were functionalized with hydroxyl groups on their surfaces. Water contact angle assays indicated that MWCNTs were hydrophobic materials, whereas MWCNTs-OH was hydrophilic. The platelet-adhesion assays displayed that the platelet-adhesion rate of MWCNTs-OH was much lower than MWCNTs. The hemolytic rate assays showed that the hemolytic rates of both MWCNTs were lower than the standard value of 5%. Conclusion: MWCNTs-OH shows superior anticoagulant capacity over MWCNTs. Both MWCNTs and MWCNTs-OH are nonhemolytic materials.