Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpr...Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpressure evolution simulation is carried out.Based on the measured formation pressure,drilling fluid density and well logging data,overpressure origin identification and overpressure evolution simulation techniques are used to analyze the vertical and lateral distribution patterns of overpressure,genetic mechanisms of overpressure in different structural belts and causes of the differential distribution of overpressure,and the controlling effects of overpressure development and evolution on the formation and distribution of oil and gas reservoirs.The research shows that overpressure occurs in multiple formations vertically in the southern Junggar foreland thrust belt,the deeper the formation,the bigger the scale of the overpressure is.Laterally,overpressure is least developed in the mountain front belt,most developed in the fold anticline belt,and relatively developed in the slope belt.The differential distribution of overpressure is mainly controlled by the differences in disequilibrium compaction and tectonic compression strengths of different belts.The vertical overpressure transmission caused by faults connecting the deep overpressured system has an important contribution to the further increase of the overpressure strength in this area.The controlling effect of overpressure development and evolution on hydrocarbon accumulation and distribution shows in the following aspects:When the strong overpressure was formed before reservoir becoming tight overpressure maintains the physical properties of deep reservoirs to some extent,expanding the exploration depth of deep reservoirs;reservoirs below the overpressured mudstone cap rocks of the Paleogene Anjihaihe Formation and Lower Cretaceous Tugulu Group are main sites for oil and gas accumulation;under the background of overall overpressure,both overpressure strength too high or too low are not conducive to hydrocarbon enrichment and preservation,and the pressure coefficient between 1.6 and 2.1 is the best.展开更多
Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly ...Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly reduce the credibility of any shale gas resources evaluation. However, there is no quantitative explanation for the accuracy of porosity measurement. In this paper, measurement uncertainty, an internationally recognized index, was used to evaluate the results of porosity measurement of gas shale plugs, and its impact on the credibility of shale gas resources assessment was determined. The following conclusions are drawn:(1) the measurement uncertainty of porosity of a shale plug is 1.76%–3.12% using current measurement methods, the upper end of which is too large to be acceptable. It is suggested that the measurement uncertainty should be factored into the standard helium gas injection porosity determination experiment, and the uncertainty should be less than 2.00% when using a high-precision pressure gauge;(2) in order to reduce the risk for exploration and decision-making, attention should be paid to the large uncertainty(30% at least) of shale gas resource assessment results, sometimes with corrections being made based on the practical considerations;(3) a pressure gauge with an accuracy of 0.25% of the full scal cannot meet the requirements of porosity measurement, and a high-precision plug cutting method or high-precision bulk volume measurement method such as one using 3 D scanning, is recommended to effectively reduce porosity uncertainty;(4) the method and process for evaluating the measurement uncertainty of gas shale porosity could also be referred for assessment of experimental quality by other laboratories.展开更多
The complexity of diagenesis and hydrocarbon accumulation in the deep reservoirs in southern Junggar Basin restricts hydrocarbon exploration in the lower reservoir assemblage. The lithofacies and diagenesis of reservo...The complexity of diagenesis and hydrocarbon accumulation in the deep reservoirs in southern Junggar Basin restricts hydrocarbon exploration in the lower reservoir assemblage. The lithofacies and diagenesis of reservoirs in the Cretaceous Qingshuihe Formation in the Gaoquan structure of the Sikeshu Sag, southern Junggar Basin were analyzed. On this basis, the thermal history was calibrated using calcite in-situ U-Pb dating and fluid inclusion analysis to depict the hydrocarbon accumulation process in the Gaoquan structure. The results show that the Qingshuihe reservoir experienced two phases of calcite cementation and three phases of hydrocarbon charging. The calcite cements are dated to be (122.1±6.4) Ma, (14.4±1.0) Ma - (14.2±0.3) Ma. The hydrocarbon charging events occurred at around 14.2-30.0 Ma (low-mature oil), 14.2 Ma (mature oil), and 2 Ma (high-mature gas). The latter two phases of hydrocarbon charging contributed dominantly to the formation of reservoir. Due to the S-N compressive thrust activity during the late Himalayan period since 2 Ma, the traps in the Gaoquan structure were reshaped, especially the effective traps which developed in the main reservoir-forming period were decreased significantly in scale, resulting in weak hydrocarbon shows in the middle-lower part of the structure. This indicates that the effective traps in key reservoir-forming period controlled hydrocarbon enrichment and distribution in the lower reservoir assemblage. Calcite U-Pb dating combined with fluid inclusion analysis can help effectively describe the complex diagenesis and hydrocarbon accumulation process in the central-west part of the basin.展开更多
基金PetroChina Science and Technology Development Project(2021DJ0105,2021DJ0203,2021DJ0303)National Natural Science Foundation of China(42172164,42002177)。
文摘Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpressure evolution simulation is carried out.Based on the measured formation pressure,drilling fluid density and well logging data,overpressure origin identification and overpressure evolution simulation techniques are used to analyze the vertical and lateral distribution patterns of overpressure,genetic mechanisms of overpressure in different structural belts and causes of the differential distribution of overpressure,and the controlling effects of overpressure development and evolution on the formation and distribution of oil and gas reservoirs.The research shows that overpressure occurs in multiple formations vertically in the southern Junggar foreland thrust belt,the deeper the formation,the bigger the scale of the overpressure is.Laterally,overpressure is least developed in the mountain front belt,most developed in the fold anticline belt,and relatively developed in the slope belt.The differential distribution of overpressure is mainly controlled by the differences in disequilibrium compaction and tectonic compression strengths of different belts.The vertical overpressure transmission caused by faults connecting the deep overpressured system has an important contribution to the further increase of the overpressure strength in this area.The controlling effect of overpressure development and evolution on hydrocarbon accumulation and distribution shows in the following aspects:When the strong overpressure was formed before reservoir becoming tight overpressure maintains the physical properties of deep reservoirs to some extent,expanding the exploration depth of deep reservoirs;reservoirs below the overpressured mudstone cap rocks of the Paleogene Anjihaihe Formation and Lower Cretaceous Tugulu Group are main sites for oil and gas accumulation;under the background of overall overpressure,both overpressure strength too high or too low are not conducive to hydrocarbon enrichment and preservation,and the pressure coefficient between 1.6 and 2.1 is the best.
基金the National Key R&D Program of China(Grant No.2017YFC0603101)the National Science and Technology Major Project of China(Grant No.2016ZX05003-002)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA1401010I,XDA14010403)the Science and Technology Programe of RIPED.PetroChina(Grant No.YGJ2019-05).
文摘Reservoir porosity is a critical parameter for the process of unconventional oil and gas resources assessment. It is difficult to determine the porosity of a gas shale reservoir, and any large deviation will directly reduce the credibility of any shale gas resources evaluation. However, there is no quantitative explanation for the accuracy of porosity measurement. In this paper, measurement uncertainty, an internationally recognized index, was used to evaluate the results of porosity measurement of gas shale plugs, and its impact on the credibility of shale gas resources assessment was determined. The following conclusions are drawn:(1) the measurement uncertainty of porosity of a shale plug is 1.76%–3.12% using current measurement methods, the upper end of which is too large to be acceptable. It is suggested that the measurement uncertainty should be factored into the standard helium gas injection porosity determination experiment, and the uncertainty should be less than 2.00% when using a high-precision pressure gauge;(2) in order to reduce the risk for exploration and decision-making, attention should be paid to the large uncertainty(30% at least) of shale gas resource assessment results, sometimes with corrections being made based on the practical considerations;(3) a pressure gauge with an accuracy of 0.25% of the full scal cannot meet the requirements of porosity measurement, and a high-precision plug cutting method or high-precision bulk volume measurement method such as one using 3 D scanning, is recommended to effectively reduce porosity uncertainty;(4) the method and process for evaluating the measurement uncertainty of gas shale porosity could also be referred for assessment of experimental quality by other laboratories.
基金Supported by PetroChina Science and Technology Development Project(2023ZZ0206,2021DJ0303,2021DJ0105,2021DJ0203)National Natural ScienceFoundation of China(U22B6002).
文摘The complexity of diagenesis and hydrocarbon accumulation in the deep reservoirs in southern Junggar Basin restricts hydrocarbon exploration in the lower reservoir assemblage. The lithofacies and diagenesis of reservoirs in the Cretaceous Qingshuihe Formation in the Gaoquan structure of the Sikeshu Sag, southern Junggar Basin were analyzed. On this basis, the thermal history was calibrated using calcite in-situ U-Pb dating and fluid inclusion analysis to depict the hydrocarbon accumulation process in the Gaoquan structure. The results show that the Qingshuihe reservoir experienced two phases of calcite cementation and three phases of hydrocarbon charging. The calcite cements are dated to be (122.1±6.4) Ma, (14.4±1.0) Ma - (14.2±0.3) Ma. The hydrocarbon charging events occurred at around 14.2-30.0 Ma (low-mature oil), 14.2 Ma (mature oil), and 2 Ma (high-mature gas). The latter two phases of hydrocarbon charging contributed dominantly to the formation of reservoir. Due to the S-N compressive thrust activity during the late Himalayan period since 2 Ma, the traps in the Gaoquan structure were reshaped, especially the effective traps which developed in the main reservoir-forming period were decreased significantly in scale, resulting in weak hydrocarbon shows in the middle-lower part of the structure. This indicates that the effective traps in key reservoir-forming period controlled hydrocarbon enrichment and distribution in the lower reservoir assemblage. Calcite U-Pb dating combined with fluid inclusion analysis can help effectively describe the complex diagenesis and hydrocarbon accumulation process in the central-west part of the basin.