Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally ...Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally friendly.However,this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.To address this problem,we performed field experiments to determine the rice yield at five seedling density levels(B1,B2,B3,B4,and B5=100,190,280,370,and 460 seedlings m-2,respectively) and clarify the physiological basis of yield formation.We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.The proportion of main stem panicle increased with increasing seedling density.There was a parabolic relationship between yield and seedling density,and the maximum yield(9.34-9.47 t ha-1) was obtained under B3.The maximum yield was associated with a higher total spikelet number m-2 and greater biomass accumulation from heading to maturity.The higher total spikelet number m-2 under B3 was attributed to an increase in panicle number m-2 compared with B1 and B2.Although the panicle numbers also increased under B4 and B5,these increases were insufficient to compensate for the reduced spikelet numbers per panicle.Lower biomass,smaller leaf area,and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m-2 of land,crop growth rate,net assimilation rate,and leaf area index.Furthermore,the B3 rice population was marked by a higher grain–leaf ratio,as well as a lower export ratio and transport ratio of biomass per stem-sheath.A quadratic function predicted that 260-290 seedlings m-2 is the optimum seedling density for achieving maximum yield.Together,these results suggested that appropriately increasing the seedling density,and thereby increasing the proportion of panicles formed by the main stem,is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system.展开更多
Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources...Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.With six sowing dates,the experiments were carried out in Donghai and Jianhu counties,Jiangsu Province,China using two semi-winter wheat varieties as the objects of this study.The basic seedlings of the first sowing date (S1) were planted at 300×10^(4)plants ha^(-1),which was increased by 10%for each of the delayed sowing dates (S2–S6).The results showed that the delay of sowing date decreased the number of days,the effective accumulated temperature and the cumulative solar radiation in the whole growth period.The yields of S1 were higher than those of S2 to S6 by 0.22–0.31,0.5–0.78,0.86–0.98,1.14–1.38,and 1.36–1.59 t ha^(–1),respectively.For a given sowing date,the growth days increased as the ecological point was moved north,while both mean daily temperature and effective accumulative temperature decreased,but the cumulative radiation increased.As a result,the yields at Donghai County were 0.01–0.39 t ha–1lower than those of Jianhu County for the six sowing dates.The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.The average temperature was significantly negatively correlated with the yield.The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.展开更多
本试验为筛选适合优质丰产机插晚稻的最佳氮肥用量,以优质双季晚稻泰优398、黄华占、天优华占、美香新占4个品种为试验材料,在机插条件下设0、135、180、255 kg hm^–2四个施氮水平,测定产量构成及稻米品质指标。结果表明,适当增施氮肥...本试验为筛选适合优质丰产机插晚稻的最佳氮肥用量,以优质双季晚稻泰优398、黄华占、天优华占、美香新占4个品种为试验材料,在机插条件下设0、135、180、255 kg hm^–2四个施氮水平,测定产量构成及稻米品质指标。结果表明,适当增施氮肥可增加优质双季晚稻产量,施氮量为180kghm^–2时产量最高。除黄华占的整精米率外,施氮量为180 kg hm^–2时各品种的糙米率、精米率和整精米率最高。随施氮量的增加,机插优质双季晚稻的垩白粒率和垩白度降低,米粒长宽比变大,蛋白质含量和胶稠度均增加,直链淀粉含量减少;峰值黏度、热浆黏度、崩解值、最终黏度逐渐下降,消减值增加,糊化温度呈上升趋势。适当增施氮肥可改善机插优质晚稻加工品质、外观品质、蒸煮和营养品质,但RVA特性有变劣趋势。180 kg hm^–2的施氮量可使机插优质双季晚稻优质和高产达到较好的协调统一。展开更多
Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting. However, the initial pot-seedling transplanting machi...Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting. However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice. Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production. Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row(K, average row spacing of 30 cm);equidistant row(D, 33 cm×12 cm);and mechanical carpet-seedling transplanting(T, 30 cm×12.4 cm). In addition, five different density treatments were set in K(K1–K5, from 18.62×10~4 to 28.49×10~4 hills ha^(–1)). The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha^(–1) in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend. Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage. With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased. Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality. These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×10~4 hills ha^(–1) and may be an alternative approach to improving grain yield and quality for japonica rice.展开更多
Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation. In order to investigate the effects of nitrogen application rate on grain...Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation. In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two japonica soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5,225, 262.5, 300, and 337.5 kg ha^-1. With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased. The highest yield was obtained at 300 kg ha^-1. The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased. Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality. These results suggest that nitrogen level significantly affects the yield and rice quality of japonica soft super rice. We conclude that the suitable nitrogen application rate for japonica soft super rice, NJ 9108 and NJ 5055, is 270 kg ha^-1, under which they obtain high yield as well as superior eating/cooking quality.展开更多
稻麦两熟地区,旱直播水稻生产受前茬小麦收获、全量麦秸秆还田及耕整地质量不高等因素的影响,常采用迟播期、大播量、高基本苗和主茎成穗为主的“独秆”栽培模式,而配套该模式直播稻优质丰产的氮肥管理技术尚缺乏系统的研究。以优质食...稻麦两熟地区,旱直播水稻生产受前茬小麦收获、全量麦秸秆还田及耕整地质量不高等因素的影响,常采用迟播期、大播量、高基本苗和主茎成穗为主的“独秆”栽培模式,而配套该模式直播稻优质丰产的氮肥管理技术尚缺乏系统的研究。以优质食味粳稻南粳9108为材料,采用机械旱直播方式,基本苗为380×10^(4) hm^(-2),设置不同叶龄期(六、七、八、九和十叶龄期)氮肥追施处理及氮肥追施用量(纯氮180 kg hm^(-2)和225 kg hm^(-2))处理,以基本苗380×10^(4) hm^(-2)和300×10^(4) hm^(-2)的旱直播精确定量氮肥管理(纯氮270 kg hm^(-2),基肥︰分蘖肥︰穗肥=3.5︰3.5︰3.0)为对照,系统比较研究“独秆”栽培模式下,全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响。结果表明,随追施叶龄的延后,水稻产量呈先增后降趋势,八叶期追施氮肥水稻产量显著高于其他处理,且追施量增加,水稻产量进一步提高。与2组对照相比,在纯氮180 kg hm^(-2),氮肥减量33.3%情况下,不施氮素基肥配合八叶期一次性追施氮肥,可显著提高水稻产量5.10%和8.65%;在纯氮225 kg hm^(-2),氮肥减量16.7%情况下,不施氮素基肥配合八叶期及7 d后二次追肥可显著提高水稻产量7.46%和11.09%。不施氮素基肥配合八叶期追施氮肥水稻产量提高的原因是,保障较大穗型的基础上增加有效穗数,显著提高群体颖花量,同时保持较高水平的结实率和千粒重。随追肥叶龄延后,水稻整精米率呈增加趋势,垩白度呈增大趋势,蛋白质含量增加,直链淀粉含量下降,食味值呈降低趋势。与2组对照相比,不施氮素基肥配合八叶期追施氮肥的水稻,加工品质提高,整精米率提高0.67%~2.23%;外观品质变好,垩白度降低3.6%~14.5%;营养品质提升,蛋白质含量增加3.03%~14.08%;蒸煮食味品质呈变优趋势,直链淀粉含量下降4.23%~10.95%;食味值无显著差异。综上所述,“独秆”栽培模式下基肥不施氮肥配合全程氮肥在分蘖中后期适宜叶龄施用可实现稻麦两熟地区旱直播稻迟播期、大播量和高基本苗生产方式的提质增产生产。展开更多
氮素穗肥用量和结实期遮光可通过影响叶片光合和植株氮营养状况对水稻籽粒碳氮代谢能力产生调节作用,从而形成不同特征的稻米品质。为探明氮素穗肥用量与结实期遮光复合作用对常规粳稻品质的影响,于2019—2020年以生育期相近的常规粳稻...氮素穗肥用量和结实期遮光可通过影响叶片光合和植株氮营养状况对水稻籽粒碳氮代谢能力产生调节作用,从而形成不同特征的稻米品质。为探明氮素穗肥用量与结实期遮光复合作用对常规粳稻品质的影响,于2019—2020年以生育期相近的常规粳稻淮稻5号、南粳9108和扬农香28为材料,设置40.5 kg hm^(-2)(N1)、81.0 kg hm^(-2)(N2)、121.5 kg hm^(-2)(N3)3个氮素穗肥用量处理,并于抽穗至成熟期采用人工遮阴方式控制水稻冠层光照,包括100%自然光照(S0)和50%自然光照(S50)处理,研究了结实期不同光氮处理组合对稻米品质的影响效应。结果表明:糙米率、精米率、整精米率在S0条件下随氮素穗肥用量的增加呈先升后降趋势,在S50条件下呈下降趋势,其中S0N2处理的整精米率最高,加工品质较好;垩白粒率和垩白度均呈S50N3>S50N2>S50N1>S0N3>S0N2>S0N1的趋势,且穗肥氮素用量的增加和结实期遮光对稻米提高垩白粒率和垩白度具有累加作用。穗肥氮素用量增加和结实期遮光均降低直链淀粉含量和胶稠度,提高蛋白质含量,其中谷蛋白的变异系数高于其他蛋白组分。穗肥氮素用量增加和结实期遮光不利于稻米食味值评分,不同品种的食味特征值对食味值评分的直接影响有差异。水稻淀粉的峰值黏度、崩解值随穗肥氮素用量增加和结实期光照强度下降而降低,消减值则上升,光氮复合作用增加了上述指标的差异。在穗肥氮素用量与结实期遮光复合作用下从直链淀粉含量和蛋白质含量比值趋势性变化来分析,结实期植株碳氮代谢能力强弱发生了变化。直链淀粉含量和蛋白质含量均与稻米食味值评分呈极显著的负相关关系,其中蛋白质的相关系数更大。因此,适量减施氮素穗肥有利于水稻结实期遭遇寡照后的稻米加工品质、外观品质及蒸煮食味品质提升,并且降低直链淀粉含量特别是蛋白质含量可能是提升稻米食味的有效途径,以期为优质水稻丰产调优栽培技术的更新提供依据。展开更多
Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great...Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system. However, such traits are yet to be studied among rice varieties ofjaponica-indica hybrid rice (JIHR),japonica conventional rice (JCR) and indica hybrid rice (IHR). Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield. Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of I HR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively. The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation. With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT. The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS. These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China.展开更多
Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristi...Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.展开更多
基金the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(20)1012)the Jiangsu Demonstration Project of Modern Agricultural Machinery Equipment and Technology, China (NJ2020-58)+3 种基金the Jiangsu Technical System of Rice Industry, China (JATS[2020]432)the National Key Research and Development Program of China (2016YFD0300503)the earmarked fund for China Agriculture Research System (CARS-01-27)the Yangzhou University Scientific Research and Innovation Program, China (XKYCX20_022)。
文摘Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally friendly.However,this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.To address this problem,we performed field experiments to determine the rice yield at five seedling density levels(B1,B2,B3,B4,and B5=100,190,280,370,and 460 seedlings m-2,respectively) and clarify the physiological basis of yield formation.We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.The proportion of main stem panicle increased with increasing seedling density.There was a parabolic relationship between yield and seedling density,and the maximum yield(9.34-9.47 t ha-1) was obtained under B3.The maximum yield was associated with a higher total spikelet number m-2 and greater biomass accumulation from heading to maturity.The higher total spikelet number m-2 under B3 was attributed to an increase in panicle number m-2 compared with B1 and B2.Although the panicle numbers also increased under B4 and B5,these increases were insufficient to compensate for the reduced spikelet numbers per panicle.Lower biomass,smaller leaf area,and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m-2 of land,crop growth rate,net assimilation rate,and leaf area index.Furthermore,the B3 rice population was marked by a higher grain–leaf ratio,as well as a lower export ratio and transport ratio of biomass per stem-sheath.A quadratic function predicted that 260-290 seedlings m-2 is the optimum seedling density for achieving maximum yield.Together,these results suggested that appropriately increasing the seedling density,and thereby increasing the proportion of panicles formed by the main stem,is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system.
基金the Jiangsu Demonstration Project of Modern Agricultural Machinery Equipment and Technology, China (NJ2020-58, NJ2019-33, NJ2021-63)。
文摘Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.With six sowing dates,the experiments were carried out in Donghai and Jianhu counties,Jiangsu Province,China using two semi-winter wheat varieties as the objects of this study.The basic seedlings of the first sowing date (S1) were planted at 300×10^(4)plants ha^(-1),which was increased by 10%for each of the delayed sowing dates (S2–S6).The results showed that the delay of sowing date decreased the number of days,the effective accumulated temperature and the cumulative solar radiation in the whole growth period.The yields of S1 were higher than those of S2 to S6 by 0.22–0.31,0.5–0.78,0.86–0.98,1.14–1.38,and 1.36–1.59 t ha^(–1),respectively.For a given sowing date,the growth days increased as the ecological point was moved north,while both mean daily temperature and effective accumulative temperature decreased,but the cumulative radiation increased.As a result,the yields at Donghai County were 0.01–0.39 t ha–1lower than those of Jianhu County for the six sowing dates.The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.The average temperature was significantly negatively correlated with the yield.The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.
文摘本试验为筛选适合优质丰产机插晚稻的最佳氮肥用量,以优质双季晚稻泰优398、黄华占、天优华占、美香新占4个品种为试验材料,在机插条件下设0、135、180、255 kg hm^–2四个施氮水平,测定产量构成及稻米品质指标。结果表明,适当增施氮肥可增加优质双季晚稻产量,施氮量为180kghm^–2时产量最高。除黄华占的整精米率外,施氮量为180 kg hm^–2时各品种的糙米率、精米率和整精米率最高。随施氮量的增加,机插优质双季晚稻的垩白粒率和垩白度降低,米粒长宽比变大,蛋白质含量和胶稠度均增加,直链淀粉含量减少;峰值黏度、热浆黏度、崩解值、最终黏度逐渐下降,消减值增加,糊化温度呈上升趋势。适当增施氮肥可改善机插优质晚稻加工品质、外观品质、蒸煮和营养品质,但RVA特性有变劣趋势。180 kg hm^–2的施氮量可使机插优质双季晚稻优质和高产达到较好的协调统一。
基金funded by the National Key Research Program of China(2016YFD0300503)the Key Research Program of Jiangsu Province,China(BE2016344 and BE2018355)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting. However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice. Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production. Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row(K, average row spacing of 30 cm);equidistant row(D, 33 cm×12 cm);and mechanical carpet-seedling transplanting(T, 30 cm×12.4 cm). In addition, five different density treatments were set in K(K1–K5, from 18.62×10~4 to 28.49×10~4 hills ha^(–1)). The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha^(–1) in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend. Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage. With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased. Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality. These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×10~4 hills ha^(–1) and may be an alternative approach to improving grain yield and quality for japonica rice.
基金the National Key Research Program of China(2016YFD0300503)the National Natural Science Foundation of China(31601246)+2 种基金the Major Independent Innovation Project in Jangsu Province,China(CX(15)1002)the Special Fund for Agro-scientific Research in the Public Interest,China(201303102)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(16KJB210014)
文摘Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation. In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two japonica soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5,225, 262.5, 300, and 337.5 kg ha^-1. With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased. The highest yield was obtained at 300 kg ha^-1. The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased. Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality. These results suggest that nitrogen level significantly affects the yield and rice quality of japonica soft super rice. We conclude that the suitable nitrogen application rate for japonica soft super rice, NJ 9108 and NJ 5055, is 270 kg ha^-1, under which they obtain high yield as well as superior eating/cooking quality.
文摘稻麦两熟地区,旱直播水稻生产受前茬小麦收获、全量麦秸秆还田及耕整地质量不高等因素的影响,常采用迟播期、大播量、高基本苗和主茎成穗为主的“独秆”栽培模式,而配套该模式直播稻优质丰产的氮肥管理技术尚缺乏系统的研究。以优质食味粳稻南粳9108为材料,采用机械旱直播方式,基本苗为380×10^(4) hm^(-2),设置不同叶龄期(六、七、八、九和十叶龄期)氮肥追施处理及氮肥追施用量(纯氮180 kg hm^(-2)和225 kg hm^(-2))处理,以基本苗380×10^(4) hm^(-2)和300×10^(4) hm^(-2)的旱直播精确定量氮肥管理(纯氮270 kg hm^(-2),基肥︰分蘖肥︰穗肥=3.5︰3.5︰3.0)为对照,系统比较研究“独秆”栽培模式下,全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响。结果表明,随追施叶龄的延后,水稻产量呈先增后降趋势,八叶期追施氮肥水稻产量显著高于其他处理,且追施量增加,水稻产量进一步提高。与2组对照相比,在纯氮180 kg hm^(-2),氮肥减量33.3%情况下,不施氮素基肥配合八叶期一次性追施氮肥,可显著提高水稻产量5.10%和8.65%;在纯氮225 kg hm^(-2),氮肥减量16.7%情况下,不施氮素基肥配合八叶期及7 d后二次追肥可显著提高水稻产量7.46%和11.09%。不施氮素基肥配合八叶期追施氮肥水稻产量提高的原因是,保障较大穗型的基础上增加有效穗数,显著提高群体颖花量,同时保持较高水平的结实率和千粒重。随追肥叶龄延后,水稻整精米率呈增加趋势,垩白度呈增大趋势,蛋白质含量增加,直链淀粉含量下降,食味值呈降低趋势。与2组对照相比,不施氮素基肥配合八叶期追施氮肥的水稻,加工品质提高,整精米率提高0.67%~2.23%;外观品质变好,垩白度降低3.6%~14.5%;营养品质提升,蛋白质含量增加3.03%~14.08%;蒸煮食味品质呈变优趋势,直链淀粉含量下降4.23%~10.95%;食味值无显著差异。综上所述,“独秆”栽培模式下基肥不施氮肥配合全程氮肥在分蘖中后期适宜叶龄施用可实现稻麦两熟地区旱直播稻迟播期、大播量和高基本苗生产方式的提质增产生产。
文摘氮素穗肥用量和结实期遮光可通过影响叶片光合和植株氮营养状况对水稻籽粒碳氮代谢能力产生调节作用,从而形成不同特征的稻米品质。为探明氮素穗肥用量与结实期遮光复合作用对常规粳稻品质的影响,于2019—2020年以生育期相近的常规粳稻淮稻5号、南粳9108和扬农香28为材料,设置40.5 kg hm^(-2)(N1)、81.0 kg hm^(-2)(N2)、121.5 kg hm^(-2)(N3)3个氮素穗肥用量处理,并于抽穗至成熟期采用人工遮阴方式控制水稻冠层光照,包括100%自然光照(S0)和50%自然光照(S50)处理,研究了结实期不同光氮处理组合对稻米品质的影响效应。结果表明:糙米率、精米率、整精米率在S0条件下随氮素穗肥用量的增加呈先升后降趋势,在S50条件下呈下降趋势,其中S0N2处理的整精米率最高,加工品质较好;垩白粒率和垩白度均呈S50N3>S50N2>S50N1>S0N3>S0N2>S0N1的趋势,且穗肥氮素用量的增加和结实期遮光对稻米提高垩白粒率和垩白度具有累加作用。穗肥氮素用量增加和结实期遮光均降低直链淀粉含量和胶稠度,提高蛋白质含量,其中谷蛋白的变异系数高于其他蛋白组分。穗肥氮素用量增加和结实期遮光不利于稻米食味值评分,不同品种的食味特征值对食味值评分的直接影响有差异。水稻淀粉的峰值黏度、崩解值随穗肥氮素用量增加和结实期光照强度下降而降低,消减值则上升,光氮复合作用增加了上述指标的差异。在穗肥氮素用量与结实期遮光复合作用下从直链淀粉含量和蛋白质含量比值趋势性变化来分析,结实期植株碳氮代谢能力强弱发生了变化。直链淀粉含量和蛋白质含量均与稻米食味值评分呈极显著的负相关关系,其中蛋白质的相关系数更大。因此,适量减施氮素穗肥有利于水稻结实期遭遇寡照后的稻米加工品质、外观品质及蒸煮食味品质提升,并且降低直链淀粉含量特别是蛋白质含量可能是提升稻米食味的有效途径,以期为优质水稻丰产调优栽培技术的更新提供依据。
基金The Special Fund for Agro-scientific Research in the Public Interest(201303102)the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)+3 种基金the National Key Research Program of China(2016YFD0300503)the Science and Technology Plan of Jiangsu Province,China(BE2015340)the Research Innovation Program for College Graduates of Jiangsu Province,China(KYLX15_1369)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China supported this study
文摘Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system. However, such traits are yet to be studied among rice varieties ofjaponica-indica hybrid rice (JIHR),japonica conventional rice (JCR) and indica hybrid rice (IHR). Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield. Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of I HR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively. The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation. With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT. The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS. These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China.
基金the National Key Research Program of China(2016YFD0300503)the Special Fund for Agro-scientific Research in the Public Interest,China(201303102)+2 种基金the Key Research Program of Jiangsu Province,China(BE2016344)the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.