In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite im...In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite imagery of Geostationary Operational Environmental Satellite (GOES)-9, three data sets from station observations at Dandong, Dalian and Qingdao, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and Regional Atmospheric Modeling System (RANIS) results. Synoptic conditions and fog characteristics were analyzed. The fog formed when warm, moist air was advected northwards over the cool water of the Yellow and Bohai Seas, and dissipated when a cold front brought northerly winds and cool, dry air. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling with a 6km×6km grid, initialized and validated by FNL data, was designed. A 48h modeling that started from 12 UTC 26 March 2005 reproduced the main characteristics of this sea fog event. The simulated lower visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role in the fog formation.展开更多
In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical adv...In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog's structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.展开更多
Typhoon Imbudo was a super-typhoon over the northwestern Pacific in 2003. It caused tremendous damage when it made landfalls in the Philippines and China. This paper documents observational analyses of Typhoon Imbudo ...Typhoon Imbudo was a super-typhoon over the northwestern Pacific in 2003. It caused tremendous damage when it made landfalls in the Philippines and China. This paper documents observational analyses of Typhoon Imbudo during its landfall in China. All available observations are used to study its motion, intensity changes, convection, structure and precipitation. Best-track data indicate that Imbudo moved west-northwestward until 1800 UTC 23 July and then turned northwestward. FNL (final) analysis data show that the motion of Imbudo is dominated by changes of the subtropical high. At Imbudo's mature stage, the minimum sea level pressure dropped to 910 hPa and the maximum sustained winds were as high as 67 m s 1, which is the intensity of a super-typhoon. The surface wind field exhibited asymmetric characteristics. Polar-orbiting satellite imagery also manifested convective asymmetry before Imbudo made landfall in China. Analyzed the vertical wind shear, it is shown that the convection has a downshear-left pattern. All kinds of precipitation data were used to identify the asymmetric characteristic of the rainfall associated with the Imbudo. The maximum rainfalls were located in the southern boundary area between Guangxi and Guangdong. However, the lack of in situ observations limited further analyses of this typhoon.展开更多
An explosive cyclone that took place over the Northwestern Pacific from 12 UTC 18 to 18 UTC 21 November 2007 was investigated.The synoptic situations and structure of this cyclone were documented by using the 1°&...An explosive cyclone that took place over the Northwestern Pacific from 12 UTC 18 to 18 UTC 21 November 2007 was investigated.The synoptic situations and structure of this cyclone were documented by using the 1°×1°final analysis data of the National Center for Environmental Prediction.This cyclone developed explosively around 18 UTC 19 and reached its maximum deepening rate(MDR,1.3 Bergeron)around 06 UTC 20 November 2007.At its MDR moment,the surface cyclone center was located in the downstream of the upper-level trough and northern entrance zone of the upper-level jet.The diagnosis using Zwack-Okossi equation suggested that cyclonic-vorticity advection and warm air advection acted to deepen this cyclone,while adiabatic cooling suppressed its development.In an investigation of this cyclone development,numerical sensitivity results obtained by using the Weather and Research Forecasting model showed that the latent heat release in the lower level had less contribution,whereas the surface sensible and latent fluxes played important roles.With a warmer ocean surface,the cyclone tended to intensify.Two topography tests were designed to examine the mountain influences on the development of this cyclone:removing a mountain and doubling the height of a mountain.Results show that the Changbai Mountains suppressed the development of the cyclone by preventing the southern moisture air from invading the inland.Without the moisture air,no latent heat release occurs when this cyclone passes over the Changbai Mountains.展开更多
Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictio...Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictions of numerical models and the actual sea state has been observed,predictions can only be released after correction by forecasters.This paper proposes a spati-otemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products.The proposed method combines the advantages of numerical models and Forecast Discussion;specifically,it integrates subjective and objective information to achieve interactive spatiotemporal correc-tions for numerical prediction.The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judg-ment of forecasters to achieve numerical prediction accuracy.The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis,thereby achieving highly efficient correction for multi-time forecasting fields.In this paper,the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis.Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states.The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently.展开更多
基金supported by the National Natural Science Foundation of China under the grant number 40675060the Chinese Ministry of Science and Technology under the 863 Project grant number 2006AA09Z151+2 种基金supported by the State Oceanic Administration under the grant 908-02-03-10the Chinese Meteorological Administration under the grant CMATG 2006M32supported by the National Science Foundation under grant number OISE-0229657.
文摘In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite imagery of Geostationary Operational Environmental Satellite (GOES)-9, three data sets from station observations at Dandong, Dalian and Qingdao, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and Regional Atmospheric Modeling System (RANIS) results. Synoptic conditions and fog characteristics were analyzed. The fog formed when warm, moist air was advected northwards over the cool water of the Yellow and Bohai Seas, and dissipated when a cold front brought northerly winds and cool, dry air. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling with a 6km×6km grid, initialized and validated by FNL data, was designed. A 48h modeling that started from 12 UTC 26 March 2005 reproduced the main characteristics of this sea fog event. The simulated lower visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role in the fog formation.
基金supported by the 201205010-5 program of the State Oceanic Administration of China and the Natural Science Foundation of China under the grant 41306028partly supported by the National Natural Science Foundation of China under the grant number, 406750060 and 41275049+5 种基金the Chinese Ministry of Science and Technology under the 863 Project grant number 2006 AA09Z151the Chinese Meteorological Administration under the grant number GYHY(QX)200706031the China Scholarship Council for the financial support to his study in NOAA from 2008 to 2010, which enables him to participate in the present worksupported by China postdoctoral funding under the grant 2012M511545the Natural Science Foundation of China under the grant 41305086supported by the open project of the Lab. of Physical Oceanography, Ocean University of China
文摘In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog's structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.
基金This work was partly supported by the National Nature Science Foundation of China under the grant numbers of 40275033 and 40240420564the open project of the Shanghai Hphoon Institute.
文摘Typhoon Imbudo was a super-typhoon over the northwestern Pacific in 2003. It caused tremendous damage when it made landfalls in the Philippines and China. This paper documents observational analyses of Typhoon Imbudo during its landfall in China. All available observations are used to study its motion, intensity changes, convection, structure and precipitation. Best-track data indicate that Imbudo moved west-northwestward until 1800 UTC 23 July and then turned northwestward. FNL (final) analysis data show that the motion of Imbudo is dominated by changes of the subtropical high. At Imbudo's mature stage, the minimum sea level pressure dropped to 910 hPa and the maximum sustained winds were as high as 67 m s 1, which is the intensity of a super-typhoon. The surface wind field exhibited asymmetric characteristics. Polar-orbiting satellite imagery also manifested convective asymmetry before Imbudo made landfall in China. Analyzed the vertical wind shear, it is shown that the convection has a downshear-left pattern. All kinds of precipitation data were used to identify the asymmetric characteristic of the rainfall associated with the Imbudo. The maximum rainfalls were located in the southern boundary area between Guangxi and Guangdong. However, the lack of in situ observations limited further analyses of this typhoon.
基金This study is supported by the National Key R&D Program of China(Nos.2017YFC1404100 and 2017YFC 1404101)the National Natural Science Foundation of China(Nos.41775042 and 41275049).
文摘An explosive cyclone that took place over the Northwestern Pacific from 12 UTC 18 to 18 UTC 21 November 2007 was investigated.The synoptic situations and structure of this cyclone were documented by using the 1°×1°final analysis data of the National Center for Environmental Prediction.This cyclone developed explosively around 18 UTC 19 and reached its maximum deepening rate(MDR,1.3 Bergeron)around 06 UTC 20 November 2007.At its MDR moment,the surface cyclone center was located in the downstream of the upper-level trough and northern entrance zone of the upper-level jet.The diagnosis using Zwack-Okossi equation suggested that cyclonic-vorticity advection and warm air advection acted to deepen this cyclone,while adiabatic cooling suppressed its development.In an investigation of this cyclone development,numerical sensitivity results obtained by using the Weather and Research Forecasting model showed that the latent heat release in the lower level had less contribution,whereas the surface sensible and latent fluxes played important roles.With a warmer ocean surface,the cyclone tended to intensify.Two topography tests were designed to examine the mountain influences on the development of this cyclone:removing a mountain and doubling the height of a mountain.Results show that the Changbai Mountains suppressed the development of the cyclone by preventing the southern moisture air from invading the inland.Without the moisture air,no latent heat release occurs when this cyclone passes over the Changbai Mountains.
基金supported by the National Key Research and Development Program of China(No.2018YFC1407002)the National Natural Science Foundation of China(Nos.62071279,41930535)the SDUST Research Fund(No.2019TDJH103).
文摘Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictions of numerical models and the actual sea state has been observed,predictions can only be released after correction by forecasters.This paper proposes a spati-otemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products.The proposed method combines the advantages of numerical models and Forecast Discussion;specifically,it integrates subjective and objective information to achieve interactive spatiotemporal correc-tions for numerical prediction.The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judg-ment of forecasters to achieve numerical prediction accuracy.The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis,thereby achieving highly efficient correction for multi-time forecasting fields.In this paper,the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis.Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states.The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently.