A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in whi...A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in which Na OH/CAS mass ratio,fusion temperature and fusion time were selected as variables,and the conversion ratio of selenium and arsenic as responses.Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables.Optimum area of >90% selenium conversion ratio and >90% arsenic conversion ratio was obtained by the overlaid contours at Na OH/CAS mass ratio of 0.65-0.75,fusion temperature of 803-823 K and fusion time of 20-30 min.The models are validated by experiments in the optimum area,and the results demonstrate that these models are reliable and accurate in predicting the fusion process.展开更多
The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mecha...The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mechanical or functional performance in a mass production scale.As the automobile technology transforms from traditional internal combustion engine vehicles to new energy vehicles,PM technology is undergoing significant changes in manufacturing and materials development.This review outlines the challenges and opportunities generated by the changes in the automotive technology for PM.Low-cost,high-performance and light-weight are critical aspects for future PM materials development.Therefore,the studies on PM lean-alloyed steel,aluminum alloys,and titanium alloy materials were reviewed.In addition,PM soft magnetic composite applied to new energy vehicles was discussed.Then new opportunities for advanced processing,such as metal injection molding(MIM)and additive manufacturing(AM),in automotive industry were stated.In general,the change in automotive industry raises sufficient development space for PM.While,emerging technologies require more preeminent PM materials.Iron-based parts are still the main PM products due to their mechanical performance and low cost.MIM will occupy the growing market of highly flexible and complex parts.AM opens a door for fast prototyping,great flexibility and customizing at low cost,driving weight and assembling reduction.展开更多
Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis o...Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.展开更多
The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef...The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.展开更多
Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption...Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption of production. However, the cost of the feedstock for additive manufacturing and the additive manufactured parts is usually very high, which hinders the further application of additive manufacturing, especially for the metal additive manufacturing. The concept of circular metal additive manufacturing involves the recycling of the metal feedstock and the additive manufactured parts leading to the truly zero waste production and the most energy saving. This paper reviews the technologies that help the formation of a circular metal additive manufacturing through recycling of the feedstocks and the damaged metal parts. Reactive metals, such as titanium, tend to be contaminated easily during handling and production. Recycling of the titanium for achieving a circular titanium additive manufacturing is reviewed in detail.展开更多
基金Project(51234009)supported by the National Natural Science Foundation of ChinaProject(2014DFA90520)supported by International Cooperation Program of Ministry of Science of ChinaProject(2013A100003)supported by the Production,Teaching and Research Program of Guangdong Province,China
文摘A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in which Na OH/CAS mass ratio,fusion temperature and fusion time were selected as variables,and the conversion ratio of selenium and arsenic as responses.Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables.Optimum area of >90% selenium conversion ratio and >90% arsenic conversion ratio was obtained by the overlaid contours at Na OH/CAS mass ratio of 0.65-0.75,fusion temperature of 803-823 K and fusion time of 20-30 min.The models are validated by experiments in the optimum area,and the results demonstrate that these models are reliable and accurate in predicting the fusion process.
基金Project(51625404)supported by the National Science Fund for Distinguished Young Scholars,China。
文摘The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mechanical or functional performance in a mass production scale.As the automobile technology transforms from traditional internal combustion engine vehicles to new energy vehicles,PM technology is undergoing significant changes in manufacturing and materials development.This review outlines the challenges and opportunities generated by the changes in the automotive technology for PM.Low-cost,high-performance and light-weight are critical aspects for future PM materials development.Therefore,the studies on PM lean-alloyed steel,aluminum alloys,and titanium alloy materials were reviewed.In addition,PM soft magnetic composite applied to new energy vehicles was discussed.Then new opportunities for advanced processing,such as metal injection molding(MIM)and additive manufacturing(AM),in automotive industry were stated.In general,the change in automotive industry raises sufficient development space for PM.While,emerging technologies require more preeminent PM materials.Iron-based parts are still the main PM products due to their mechanical performance and low cost.MIM will occupy the growing market of highly flexible and complex parts.AM opens a door for fast prototyping,great flexibility and customizing at low cost,driving weight and assembling reduction.
基金Project(2019M653082)supported by the China Postdoctoral Science FoundationProject(BGRIMM-KJSKL-2020-02)supported by the Found of State Key Laboratory of Mineral Processing,China。
文摘Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.
基金Project(2013DFA51290)supported by International S&T Cooperation Program of China
文摘The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.
基金Project(51922108)supported by the National Natural Science Foundation of ChinaProject(2019JJ20031)supported by Hunan Natural Science Foundation,ChinaProject(2019SK2061)supported by Hunan Key Research and Development Program,China。
文摘Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption of production. However, the cost of the feedstock for additive manufacturing and the additive manufactured parts is usually very high, which hinders the further application of additive manufacturing, especially for the metal additive manufacturing. The concept of circular metal additive manufacturing involves the recycling of the metal feedstock and the additive manufactured parts leading to the truly zero waste production and the most energy saving. This paper reviews the technologies that help the formation of a circular metal additive manufacturing through recycling of the feedstocks and the damaged metal parts. Reactive metals, such as titanium, tend to be contaminated easily during handling and production. Recycling of the titanium for achieving a circular titanium additive manufacturing is reviewed in detail.