The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
Vessel Monitoring System(VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels....Vessel Monitoring System(VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels. However, one research problem is still calling for solutions, how to identify the fishing vessel type based on only VMS trajectories. This problem is important because it requires the fishing vessel type as a preliminary to recognize fishing activities from VMS trajectories. This paper proposes fishing vessel type identification scheme(FVID) based only on VMS trajectories. FVID exploits feature engineering and machine learning schemes of XGBoost as its two key blocks and classifies fishing vessels into nine types. The dataset contains all the fishing vessel trajectories in the East China Sea in March 2017, including 10031 pre-registered fishing vessels and 1350 unregistered vessels of unknown types. In order to verify type identification accuracy, we first conduct a 4-fold cross-validation on the trajectories of registered fishing vessels. The classification accuracy is 95.42%. We then apply FVID to the unregistered fishing vessels to identify their types. After classifying the unregistered fishing vessel types, their fishing activities are further recognized based upon their types. At last, we calculate and compare the fishing density distribution in the East China Sea before and after applying the unregistered fishing vessels, confirming the importance of type identification of unregistered fishing vessels.展开更多
A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is rou...A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.展开更多
Oceanic autonomous surface vehicles(ASVs) are one kind of autonomous marine robots that have advantages of energy saving and is flexible to use. Nowadays, ASVs are playing an important role in marine science, maritime...Oceanic autonomous surface vehicles(ASVs) are one kind of autonomous marine robots that have advantages of energy saving and is flexible to use. Nowadays, ASVs are playing an important role in marine science, maritime industry, and national defense. It could improve the efficiency of oceanic data collection, ensure marine transportation safety, and protect national security. One of the core challenges for ASVs is how to plan a safe navigation autonomously under the complicated ocean environment. Based on the type of marine vehicles, ASVs could be divided into two categories: autonomous sailboats and autonomous vessels. In this article, we review the challenges and related solutions of ASVs' autonomous navigation, including modeling analysis, path planning and implementation. Finally, we make a summary of all of those in four tables and discuss about the future research directions.展开更多
The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the ...The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.展开更多
With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more a...With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.展开更多
Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems(OISs) often suffer from low efficiency ...Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems(OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.展开更多
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金partially supported by National Key R&D Program (No. 2016YFC 1401900)the National Natural Science Foundation of China (Nos. 61379127, 61379128, 61572448)+1 种基金the Fundamental Research Funds for the Central Universities (No. 201713016)Qingdao National Laboratory for Marine Science and Technology Open Research Project (No. QNLM2016ORP 0405)
文摘Vessel Monitoring System(VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels. However, one research problem is still calling for solutions, how to identify the fishing vessel type based on only VMS trajectories. This problem is important because it requires the fishing vessel type as a preliminary to recognize fishing activities from VMS trajectories. This paper proposes fishing vessel type identification scheme(FVID) based only on VMS trajectories. FVID exploits feature engineering and machine learning schemes of XGBoost as its two key blocks and classifies fishing vessels into nine types. The dataset contains all the fishing vessel trajectories in the East China Sea in March 2017, including 10031 pre-registered fishing vessels and 1350 unregistered vessels of unknown types. In order to verify type identification accuracy, we first conduct a 4-fold cross-validation on the trajectories of registered fishing vessels. The classification accuracy is 95.42%. We then apply FVID to the unregistered fishing vessels to identify their types. After classifying the unregistered fishing vessel types, their fishing activities are further recognized based upon their types. At last, we calculate and compare the fishing density distribution in the East China Sea before and after applying the unregistered fishing vessels, confirming the importance of type identification of unregistered fishing vessels.
基金supported by the open fund project ‘Research of Information Service of Marine Sensor Web’ (Grant No.2011002)the project ‘Research on Channel-Characteristics-Oriented Data Transmission Algorithm in USNs’ of NSF of China (Grant No.61202403)the projects ‘Research of Making Regulation of Testing Technology of Device Interface’ and ‘Development and Application of Real-Time and Long-Term Observation Network Under Nearshore and Adjacent Marine Areas’ of Public science and Technology Research Funds Projects of Ocean(Grant No.201305033-6,No.201105030)
文摘A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.
基金partially supported by the National Key R&D Program (No.2016YFC1401900)the China Postdoctoral Science Foundation (No.2017M620293)+4 种基金the Fundamental Research Funds for the Central Universities (No.201713016)Qingdao National Labor for Marine Science and Technology Open Research Project (No.QNLM2016ORP0405)the Natural Science Foundation of Shandong (No.ZR2018BF006)partially supported by the National Natural Science Foundation of China (No.61572347)the U.S.Department of Transportation Center for Advanced Multimodal Mobility Solutions and Education (No.69A3351747133)。
文摘Oceanic autonomous surface vehicles(ASVs) are one kind of autonomous marine robots that have advantages of energy saving and is flexible to use. Nowadays, ASVs are playing an important role in marine science, maritime industry, and national defense. It could improve the efficiency of oceanic data collection, ensure marine transportation safety, and protect national security. One of the core challenges for ASVs is how to plan a safe navigation autonomously under the complicated ocean environment. Based on the type of marine vehicles, ASVs could be divided into two categories: autonomous sailboats and autonomous vessels. In this article, we review the challenges and related solutions of ASVs' autonomous navigation, including modeling analysis, path planning and implementation. Finally, we make a summary of all of those in four tables and discuss about the future research directions.
基金supported by the National Key R&D Program (No. 2016YFC1401900)the China Postdoctoral Science Foundation (No. 2017M620293)+3 种基金the National Natural Science Foundation of China (Nos. 61379127, 61379128, 61572448)the Fundamental Research Funds for the Central Universities (No. 201713016)Qingdao National Labor for Marine Science and Technology Open Research Project (No. QNLM2016ORP0405)Natural Science Foundation of Shandong (No. ZR2018BF006)
文摘The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.
基金supported by the National Natural Science Foundation of China(Nos.41606112,61103196,61379127,61379128)the National High Technology Research and Development Program 863(No.2013AA09A506)
文摘With the newly proposed Global Ocean Observing Integration, ocean observing scope has been expanded from the region to the global, therefore the need of large-scale ocean observing system integration has become more and more urgent. Currently, ocean observing systems enabled ocean sensor networks are commonly developed by different organizations using specific technologies and platforms, which brings several challenges in ocean observing instrument (OOI) access and ocean observing system seamless integration. Furthermore, the development of ocean observing systems often suffers from low efficiency due to the complex prograrmning and debugging process. To solve these problems, a novel model, Complex Virtual Instrument (CVI) Model, is proposed. The model provides formal definitions on observing instrument description file, CVI description file, model calculation method, development model and interaction standard. In addition, this model establishes mathematical expressions of two model calculation operations, meanwhile builds the mapping relationship between observing instrument description file and CVI description file. The CVI based on the new model can achieve automatic access to different OOIs, seamless integration and communication for heterogeneous environments, and further implement standardized data access and management for the global unified ocean observing network. Throughout the development, integration and application of such CVI, the rationality and feasibility of the model have been evaluated. The results confirm that the proposed model can effectively implement heterogeneous system integration, improve development efficiency, make full usage of reusable components, reduce development cost, and enhance overall software system quality. We believe that our new model has great significance to promote the large-scale ocean observing system integration.
基金supported in part by National Natural Science Foundation of China under grant No. 61170258 and 61379127National Ocean Public Benefit Research Foundation under grant No. 201305033-6 and 2011 05034-10+1 种基金Marine Renewable Energy Special Foundation under grant No. GHME2012ZC02Science and Technology Development Plan of Qingdao City under Grant No. 12-1-3-81-jh
文摘Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems(OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.