期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Environmental changes affect picoplanktonic composition in Antarctic Peninsula ponds
1
作者 Micaela DÍAZ Leonardo LAGOMARSINO +3 位作者 gabriela mataloni Marianela BELTRÁN Marcela LIBERTELLI Paulina FERMANI 《Advances in Polar Science》 CSCD 2024年第1期108-122,共15页
Antarctic Peninsula is experiencing one of the largest global warming events worldwide.Shallow water bodies generated by the melting of snow in summer are numerous,and they might act as sentinels of climate change due... Antarctic Peninsula is experiencing one of the largest global warming events worldwide.Shallow water bodies generated by the melting of snow in summer are numerous,and they might act as sentinels of climate change due to their rapid response and ability to integrate catchment information.Shifts in climate can influence the structure of microbial communities which dominate these freshwaters ecosystems.Here,we characterize three ponds at Cierva Point(Antarctic Peninsula)by examining their physico-chemical and morphological characteristics and we explored how different factors modify the structure of the microbial community.We studied the abundance and biomass of heterotrophic bacteria,picocyanobacteria and picoeukaryote algae during January and February of two consecutive summers(2017 and 2018).We found that ponds had different limnological characteristics,due to their location,geomorphological features and presence of the surrounding flora and fauna.Physico-chemical parameters as well as microbial community differed between ponds,months and years.In 2017,most ponds were oligo to mesotrophic states.The larger accumulated rainfall(as a result of environmental changes on the Antarctic Peninsula)during 2018,particularly in February,causes nutrient runoff into water bodies.This affects those ponds with the highest seabird circulation,such as gentoo penguin,increasing eutrophication.As a result,picoplanktonic abundances were higher,and the community structure shifts to a largely heterotrophic bacteria dominated one.These results suggest that these communities could act as sentinels to environmental changes,anticipating a future with mostly hypertrophic ponds. 展开更多
关键词 MICROORGANISMS freshwater environments climate change Cierva Point
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部