Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Polymorphism has been frequently used in tuning the singlet emissions of pure organic dyes. The modulation of triplet-involved emissions, particularly room temperature phosphorescence(RTP),however, is scarcely reporte...Polymorphism has been frequently used in tuning the singlet emissions of pure organic dyes. The modulation of triplet-involved emissions, particularly room temperature phosphorescence(RTP),however, is scarcely reported. Herein, polymorphism is reported to tune the triplet-involved emissions of 2 CZBZL, a newly designed pure organic luminogen consisting of twisted benzil and two planar carbazole moieties. Other than the conventional modulation through changing molecular conformation and packing, vibration can also finely tune the triplet-involved emissions. Besides prompt fluorescence(PF),polymorph B with relatively extended conformation emits thermally activated delayed fluorescence(TADF), whereas the others(A, C–E) with similarly more twisted conformations generate predominant RTP or simultaneous DF and RTP. These results demonstrate the fascinating chance to regulate the tripletinvolved emissions through controlling conformation and vibration.展开更多
二氧化锡(SnO_(2))具有高的理论比容量,有望作为下一代锂离子电池负极材料.然而,Sn向SnO_(2)的不可逆转化以及充放电过程中巨大的体积变化限制了其实际的应用.本文基于三维互连多孔氧化铝模板,设计合成了一种由内腔同时填充NiO和SnO_(2...二氧化锡(SnO_(2))具有高的理论比容量,有望作为下一代锂离子电池负极材料.然而,Sn向SnO_(2)的不可逆转化以及充放电过程中巨大的体积变化限制了其实际的应用.本文基于三维互连多孔氧化铝模板,设计合成了一种由内腔同时填充NiO和SnO_(2)纳米颗粒的碳管基元相互连接组成的三维碳管网格膜,可以直接作为自支撑的高性能锂离子电池负极.该复合框架利用了NiO和SnO_(2)纳米颗粒的协同作用,不仅能够促进Sn向SnO_(2)的可逆转变,提高首次库伦效率,而且还可以缓释充放电过程中SnO_(2)剧烈的体积变化.此外,相互连接的三维碳管框架可以负载大量NiO和SnO_(2)纳米颗粒,缩短Li+的扩散距离,并作为快速的电子传输通道.因此,这种独特的结构赋予了该电极超高的储锂容量和倍率性能在1 A g^(-1)循环200次后,比容量达到928.5 mA h g^(-1),并且在4 A g^(-1)的高电流密度下仍然具有633.5 mA h g^(-1)的比容量.总之,这种独特的一体化结构在锂离子电池等储能领域具有广阔的应用前景.展开更多
The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tu...The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.展开更多
Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional...Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional solid luminogens through the combination of diverse aggregation-induced emission (ALE) units with other functional moieties, a group of luminophores with electron donor-acceptor (D-A) structure and typical intramolecular charge transfer (ICT) characteristics, namely CZ-DCDPP, DPA-DCDPP and DBPA-DCDPP were synthesized and investigated. The presence of twisting and AlE-active 2,3- dicyano-S,6-diphenylpyrazine (DCDPP) moiety endows them highly emissive in the solid states, whereas the introduction of arylamines with varied electron-donating capacity and different conjugation render them with tunable solid emissions from green to red. While CZ-DCDPP and DPA-DCDPP solids exhibit distinct mechanochromism, both DPA-DCDPP and DBPA-DCDPP solids can generate efficient red emission. Owing to their high efficiency, remarkable thermal and morphological stabilities and moreover red emission, they are promising for diverse optoelectronic and biological applications.展开更多
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金financially supported by the National Natural Science Foundation of China (Nos. 51822303, 51473092)
文摘Polymorphism has been frequently used in tuning the singlet emissions of pure organic dyes. The modulation of triplet-involved emissions, particularly room temperature phosphorescence(RTP),however, is scarcely reported. Herein, polymorphism is reported to tune the triplet-involved emissions of 2 CZBZL, a newly designed pure organic luminogen consisting of twisted benzil and two planar carbazole moieties. Other than the conventional modulation through changing molecular conformation and packing, vibration can also finely tune the triplet-involved emissions. Besides prompt fluorescence(PF),polymorph B with relatively extended conformation emits thermally activated delayed fluorescence(TADF), whereas the others(A, C–E) with similarly more twisted conformations generate predominant RTP or simultaneous DF and RTP. These results demonstrate the fascinating chance to regulate the tripletinvolved emissions through controlling conformation and vibration.
基金supported by the National Natural Science Foundation of China (91963202 and 52072372)the Key Research Program of Frontier Sciences (CAS, QYZDJ-SSW-SLH046)+1 种基金the CAS/SAFEA International Partnership Program for Creative Research TeamsHefei Institutes of Physical Science, Chinese Academy of Sciences Director’s Fund (YZJJZX202018)。
文摘二氧化锡(SnO_(2))具有高的理论比容量,有望作为下一代锂离子电池负极材料.然而,Sn向SnO_(2)的不可逆转化以及充放电过程中巨大的体积变化限制了其实际的应用.本文基于三维互连多孔氧化铝模板,设计合成了一种由内腔同时填充NiO和SnO_(2)纳米颗粒的碳管基元相互连接组成的三维碳管网格膜,可以直接作为自支撑的高性能锂离子电池负极.该复合框架利用了NiO和SnO_(2)纳米颗粒的协同作用,不仅能够促进Sn向SnO_(2)的可逆转变,提高首次库伦效率,而且还可以缓释充放电过程中SnO_(2)剧烈的体积变化.此外,相互连接的三维碳管框架可以负载大量NiO和SnO_(2)纳米颗粒,缩短Li+的扩散距离,并作为快速的电子传输通道.因此,这种独特的结构赋予了该电极超高的储锂容量和倍率性能在1 A g^(-1)循环200次后,比容量达到928.5 mA h g^(-1),并且在4 A g^(-1)的高电流密度下仍然具有633.5 mA h g^(-1)的比容量.总之,这种独特的一体化结构在锂离子电池等储能领域具有广阔的应用前景.
基金supported by the National Natural Science Foundation of China(Nos.91963202,52072372,and 52232007).
文摘The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.
基金supported by the National Natural Science Foundation of China (No. 51473092)the Shanghai Rising-Star Program (No. 15QA1402500)
文摘Fabrication of efficient solid luminogens with tunable emission is both fundamentally significant and technically important. Herein, based on our previous strategy for the construction of efficient and multifunctional solid luminogens through the combination of diverse aggregation-induced emission (ALE) units with other functional moieties, a group of luminophores with electron donor-acceptor (D-A) structure and typical intramolecular charge transfer (ICT) characteristics, namely CZ-DCDPP, DPA-DCDPP and DBPA-DCDPP were synthesized and investigated. The presence of twisting and AlE-active 2,3- dicyano-S,6-diphenylpyrazine (DCDPP) moiety endows them highly emissive in the solid states, whereas the introduction of arylamines with varied electron-donating capacity and different conjugation render them with tunable solid emissions from green to red. While CZ-DCDPP and DPA-DCDPP solids exhibit distinct mechanochromism, both DPA-DCDPP and DBPA-DCDPP solids can generate efficient red emission. Owing to their high efficiency, remarkable thermal and morphological stabilities and moreover red emission, they are promising for diverse optoelectronic and biological applications.