This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. Th...This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. This characteristic dimension corresponds to the diameter D for the sphere, to the edge a for the cube and the diameter = height D = H for the cylinder. Unlike the sphere where this characteristic dimension is perfect, the cubic and cylindrical shapes have space factors which are, among other things, angles and borders. By fixing the same characteristic dimensions, we end up with overlapping curves, showing identical and uniform transfers.展开更多
In this paper, we perform experiments on the drying of widely consumed food products in Africa. Tomatoes and peppers are considered as products with a complex structure. Zucchini, cucumber, eggplant and cabbages are t...In this paper, we perform experiments on the drying of widely consumed food products in Africa. Tomatoes and peppers are considered as products with a complex structure. Zucchini, cucumber, eggplant and cabbages are the other products used in these drying experiments, having different intrinsic parameters. Most food products have three components, namely skin, flesh containing seeds and the central spongy structure, that do not have the same behavior during their convective drying. Skin is the component that significantly reduces drying while the flesh is easy to dry. By drying the samples considering their intrinsic parameters, one quickly realizes the complex nature of mass and heat transfers during the drying of biological products.展开更多
文摘This present work solves the problem of initial shape influence on transfer during convective drying. A characteristic dimension is found for the cubic, cylindrical and spherical-shaped samples of the sweet potato. This characteristic dimension corresponds to the diameter D for the sphere, to the edge a for the cube and the diameter = height D = H for the cylinder. Unlike the sphere where this characteristic dimension is perfect, the cubic and cylindrical shapes have space factors which are, among other things, angles and borders. By fixing the same characteristic dimensions, we end up with overlapping curves, showing identical and uniform transfers.
文摘In this paper, we perform experiments on the drying of widely consumed food products in Africa. Tomatoes and peppers are considered as products with a complex structure. Zucchini, cucumber, eggplant and cabbages are the other products used in these drying experiments, having different intrinsic parameters. Most food products have three components, namely skin, flesh containing seeds and the central spongy structure, that do not have the same behavior during their convective drying. Skin is the component that significantly reduces drying while the flesh is easy to dry. By drying the samples considering their intrinsic parameters, one quickly realizes the complex nature of mass and heat transfers during the drying of biological products.