Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite...Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.展开更多
Liquid metal represents a highly conductive and inherently deformable conductor for the development of stretchable electronics.The widespread implementations of liquid metal towards functional sensors and circuits are...Liquid metal represents a highly conductive and inherently deformable conductor for the development of stretchable electronics.The widespread implementations of liquid metal towards functional sensors and circuits are currently hindered by the lack of a facile and scalable patterning approach.In this study,we report a fully solution-based process to generate patterned features of the liquid metal conductor.The entire process is carried out under ambient conditions and is generally compatible with various elastomeric substrates.The as-prepared liquid metal feature exhibits high resolution(100μm),excellent electrical conductivity(4.15×10^(4)S cm^(−1)),ultrahigh stretchability(1000%tensile strain),and mechanical durability.The practical suitability is demonstrated by the heterogeneous integration of light-emitting diode(LED)chips with liquid metal interconnects for a stretchable and wearable LED array.The solution-based technique reported here is the enabler for the facile patterning of liquid metal features at low cost,which may find a broad range of applications in emerging fields of epidermal sensors,wearable heaters,advanced prosthetics,and soft robotics.展开更多
基金We acknowledge the support from the National Key Research and Development Program of China(Grant No.2022YFA1405000)the Natural Science Foundation of Jiangsu Province,Major Project(Grant No.BK20212004)+1 种基金the National Natural Science Foundation of China(Grant No.62374083)the State Key Laboratory of Analytical Chemistry for Life Science(Grant No.5431ZZXM2205).
文摘Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.
基金supported by the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(Grant No.BE2019002)the High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province.
文摘Liquid metal represents a highly conductive and inherently deformable conductor for the development of stretchable electronics.The widespread implementations of liquid metal towards functional sensors and circuits are currently hindered by the lack of a facile and scalable patterning approach.In this study,we report a fully solution-based process to generate patterned features of the liquid metal conductor.The entire process is carried out under ambient conditions and is generally compatible with various elastomeric substrates.The as-prepared liquid metal feature exhibits high resolution(100μm),excellent electrical conductivity(4.15×10^(4)S cm^(−1)),ultrahigh stretchability(1000%tensile strain),and mechanical durability.The practical suitability is demonstrated by the heterogeneous integration of light-emitting diode(LED)chips with liquid metal interconnects for a stretchable and wearable LED array.The solution-based technique reported here is the enabler for the facile patterning of liquid metal features at low cost,which may find a broad range of applications in emerging fields of epidermal sensors,wearable heaters,advanced prosthetics,and soft robotics.