期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design Optimization of a Self-circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method
1
作者 gaojia zhu Yunhao Li Longnv Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期170-176,共7页
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s... With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined. 展开更多
关键词 Permanent magnet wind generator Hydrogen cooling Taguchi method Fluidic-thermal coupled fields
下载PDF
Cooling System Design Optimization of an Enclosed PM Traction Motor for Subway Propulsion Systems 被引量:1
2
作者 Longnv Li Nan Jia +2 位作者 Xizhe Wang Yiran Yun gaojia zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第4期390-396,共7页
This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accuratel... This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accurately the machine's inherent cooling capacity when the train is running,the ambient airflow and the related heat transfer coefficient(HTC)are numerically investigated considering synchronously the bogie installation structure.The machine is preliminary cooled with air ducts set on the motor shell,and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated.During simulations,the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement.To reduce the temperature rise and thus guarantee the motor's working reliability,an internal self-circulated air cooling system is proposed according to the machine temperature distribution.The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions.The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system. 展开更多
关键词 Permanent magnet(PM)traction motor Bogie installation structure Self-circulated ventilation system Taguchi method
下载PDF
Coupled Electromagnetic-Thermal-Fluidic Analysis of Permanent Magnet Synchronous Machines with a Modified Model 被引量:8
3
作者 gaojia zhu Xiaoming Liu +2 位作者 Longnv Li Hai Chen Jianguo zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期204-209,共6页
The researches on the heat generation and dissipa-tion of the permanent magnet synchronous machines(PMSMs)are integrated problems involving multidisciplinary studies of electromagnetism,thermomechanics,and computation... The researches on the heat generation and dissipa-tion of the permanent magnet synchronous machines(PMSMs)are integrated problems involving multidisciplinary studies of electromagnetism,thermomechanics,and computational fluid dynamics.The governing equations of the multi-physical prob-lems are coupled and hard to be solved and illustrated.The high accuracy mathematical model in the algebraically integral con-servative forms of the coupled fields is established and computed in this paper.And the equation coupling with the fluid flow and the temperature variation is modified to improve the positive definiteness and the symmetry of the global stiffness matrix.The computational burden is thus reduced by the model modification.A 20kW 4500rpm permanent magnet synchronous machine(PMSM)is taken as the prototype,and the calculation results are validated by experimental ones. 展开更多
关键词 Cell method(CM) model modification mul-ti-physics coupled problems permanent magnet synchronous machine(PMSM).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部