The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature f...The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction (ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry (CV) and rotating disk electrode (RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of -1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C-Sn-C, an additional beneficial factor for the ORR.展开更多
The present study investigated the effects of cow manure ratios mixed with maize stover,rice straw,and wheat stalk at 3,2,1(total solid based,TS-based),respectively,on methane production and microbial community struct...The present study investigated the effects of cow manure ratios mixed with maize stover,rice straw,and wheat stalk at 3,2,1(total solid based,TS-based),respectively,on methane production and microbial community structure during the anaerobic co-digestion process.Results showed cow manure co-digested with maize stover,wheat stalk,and rice straw at ratios of 2,1,and 3 had the highest cumulative methane yields(272.99,153.22167.73 mL/g volatile solid(VS),respectively)and better stability(e.g.pH,volatile fatty acids(VFAs)and their component).The main microbe evolution had a similar trend which was Petrimonas and Methanosaeta in the early digestion process(Days 0-7)and then evolved into Longilinea,Ruminofilibacter,and Methanosarcina with the progress of digestion,but the relative abundance of these microbes in each reactor was different.It was worth noting that Caldicoprobacter in cow manure to maize stover ratio of 2,and to rice straw ratio of three reactors had a relatively higher proportion than reactor of cow manure to wheat stalk ratio of 1,and Hydrogenophaga was the specific bacterium in cow manure to wheat stalk ratio of 1 reactor.In addition,Petrimonas showed positive relationship with VFAs and Longilinea was the opposite.Methanosaeta and Methanobacterium contributed the most during the peak period of methane production in cow manure and maize stover co-digested reactor,and showed positive relationship with acetic acid.However,Methanosarcina and Methanospirillum made a great contribution during the peak period of methane production in cow manure co-digested with wheat stalk and rice straw reactors.These findings could provide further information on the application of cow manure co-digested with crop wastes.展开更多
基金supported by the National Natural Science Foundation of China(91223202)the International Science&Technology Cooperation Program of China(No.2011DFA73410)+1 种基金Tsinghua University Initiative Scientific Research Program(No.20101081907)the National Key Basic Research Program of China-973 Program(No.2011CB013102)
文摘The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction (ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry (CV) and rotating disk electrode (RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of -1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C-Sn-C, an additional beneficial factor for the ORR.
基金financially supported by the Youth Natural Science Foundation of Hebei province(Grant No.E2020204023)the Talents Introduction Plan(Grant No.YJ201831)of the Hebei Agricultural University+1 种基金the Key R&D projects of Hebei Province(Grant No.19223811D)the Forestry discipline project of Hebei Agricultural University(Grant No.XK1008601579).
文摘The present study investigated the effects of cow manure ratios mixed with maize stover,rice straw,and wheat stalk at 3,2,1(total solid based,TS-based),respectively,on methane production and microbial community structure during the anaerobic co-digestion process.Results showed cow manure co-digested with maize stover,wheat stalk,and rice straw at ratios of 2,1,and 3 had the highest cumulative methane yields(272.99,153.22167.73 mL/g volatile solid(VS),respectively)and better stability(e.g.pH,volatile fatty acids(VFAs)and their component).The main microbe evolution had a similar trend which was Petrimonas and Methanosaeta in the early digestion process(Days 0-7)and then evolved into Longilinea,Ruminofilibacter,and Methanosarcina with the progress of digestion,but the relative abundance of these microbes in each reactor was different.It was worth noting that Caldicoprobacter in cow manure to maize stover ratio of 2,and to rice straw ratio of three reactors had a relatively higher proportion than reactor of cow manure to wheat stalk ratio of 1,and Hydrogenophaga was the specific bacterium in cow manure to wheat stalk ratio of 1 reactor.In addition,Petrimonas showed positive relationship with VFAs and Longilinea was the opposite.Methanosaeta and Methanobacterium contributed the most during the peak period of methane production in cow manure and maize stover co-digested reactor,and showed positive relationship with acetic acid.However,Methanosarcina and Methanospirillum made a great contribution during the peak period of methane production in cow manure co-digested with wheat stalk and rice straw reactors.These findings could provide further information on the application of cow manure co-digested with crop wastes.