In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.展开更多
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness...The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.展开更多
Finding a suitable solution to an optimization problem designed in science is a major challenge.Therefore,these must be addressed utilizing proper approaches.Based on a random search space,optimization algorithms can ...Finding a suitable solution to an optimization problem designed in science is a major challenge.Therefore,these must be addressed utilizing proper approaches.Based on a random search space,optimization algorithms can find acceptable solutions to problems.Archery Algorithm(AA)is a new stochastic approach for addressing optimization problems that is discussed in this study.The fundamental idea of developing the suggested AA is to imitate the archer’s shooting behavior toward the target panel.The proposed algorithm updates the location of each member of the population in each dimension of the search space by a member randomly marked by the archer.The AA is mathematically described,and its capacity to solve optimization problems is evaluated on twenty-three distinct types of objective functions.Furthermore,the proposed algorithm’s performance is compared vs.eight approaches,including teaching-learning based optimization,marine predators algorithm,genetic algorithm,grey wolf optimization,particle swarm optimization,whale optimization algorithm,gravitational search algorithm,and tunicate swarm algorithm.According to the simulation findings,the AA has a good capacity to tackle optimization issues in both unimodal and multimodal scenarios,and it can give adequate quasi-optimal solutions to these problems.The analysis and comparison of competing algorithms’performance with the proposed algorithm demonstrates the superiority and competitiveness of the AA.展开更多
Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algo...Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algorithms are one of the efficient and effective methods in providing quasioptimal solutions for these type of problems.In this study,a new algorithm called the Mutated Leader Algorithm(MLA)is presented.The main idea in the proposed MLA is to update the members of the algorithm population in the search space based on the guidance of a mutated leader.In addition to information about the best member of the population,themutated leader also contains information about the worst member of the population,as well as other normal members of the population.The proposed MLA is mathematically modeled for implementation on optimization problems.A standard set consisting of twenty-three objective functions of different types of unimodal,fixed-dimensional multimodal,and high-dimensional multimodal is used to evaluate the ability of the proposed algorithm in optimization.Also,the results obtained from theMLA are compared with eight well-known algorithms.The results of optimization of objective functions show that the proposed MLA has a high ability to solve various optimization problems.Also,the analysis and comparison of the performance of the proposed MLA against the eight compared algorithms indicates the superiority of the proposed algorithm and ability to provide more suitable quasi-optimal solutions.展开更多
There are many optimization problems in different branches of science that should be solved using an appropriate methodology.Populationbased optimization algorithms are one of the most efficient approaches to solve th...There are many optimization problems in different branches of science that should be solved using an appropriate methodology.Populationbased optimization algorithms are one of the most efficient approaches to solve this type of problems.In this paper,a new optimization algorithm called All Members-Based Optimizer(AMBO)is introduced to solve various optimization problems.The main idea in designing the proposedAMBOalgorithm is to use more information from the population members of the algorithm instead of just a few specific members(such as best member and worst member)to update the population matrix.Therefore,in AMBO,any member of the population can play a role in updating the population matrix.The theory of AMBO is described and then mathematically modeled for implementation on optimization problems.The performance of the proposed algorithm is evaluated on a set of twenty-three standard objective functions,which belong to three different categories:unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions.In order to analyze and compare the optimization results for the mentioned objective functions obtained by AMBO,eight other well-known algorithms have been also implemented.The optimization results demonstrate the ability of AMBO to solve various optimization problems.Also,comparison and analysis of the results show that AMBO is superior andmore competitive than the other mentioned algorithms in providing suitable solution.展开更多
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte...As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images.展开更多
Finding the suitable solution to optimization problems is a fundamental challenge in various sciences.Optimization algorithms are one of the effective stochastic methods in solving optimization problems.In this paper,...Finding the suitable solution to optimization problems is a fundamental challenge in various sciences.Optimization algorithms are one of the effective stochastic methods in solving optimization problems.In this paper,a new stochastic optimization algorithm called Search StepAdjustment Based Algorithm(SSABA)is presented to provide quasi-optimal solutions to various optimization problems.In the initial iterations of the algorithm,the step index is set to the highest value for a comprehensive search of the search space.Then,with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal,the step index is reduced to reach the minimum value at the end of the algorithm implementation.SSABA is mathematically modeled and its performance in optimization is evaluated on twenty-three different standard objective functions of unimodal and multimodal types.The results of optimization of unimodal functions show that the proposed algorithm SSABA has high exploitation power and the results of optimization of multimodal functions show the appropriate exploration power of the proposed algorithm.In addition,the performance of the proposed SSABA is compared with the performance of eight well-known algorithms,including Particle Swarm Optimization(PSO),Genetic Algorithm(GA),Teaching-Learning Based Optimization(TLBO),Gravitational Search Algorithm(GSA),Grey Wolf Optimization(GWO),Whale Optimization Algorithm(WOA),Marine Predators Algorithm(MPA),and Tunicate Swarm Algorithm(TSA).The simulation results show that the proposed SSABA is better and more competitive than the eight compared algorithms with better performance.展开更多
Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the foss...Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.展开更多
The equilibrium optimizer(EO)represents a new,physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equili...The equilibrium optimizer(EO)represents a new,physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium.Despite its innovative foundation,the EO exhibits certain limitations,including imbalances between exploration and exploitation,the tendency to local optima,and the susceptibility to loss of population diversity.To alleviate these drawbacks,this paper introduces an improved EO that adopts three strategies:adaptive inertia weight,Cauchy mutation,and adaptive sine cosine mechanism,called SCEO.Firstly,a new update formula is conceived by incorporating an adaptive inertia weight to reach an appropriate balance between exploration and exploitation.Next,an adaptive sine cosine mechanism is embedded to boost the global exploratory capacity.Finally,the Cauchy mutation is utilized to prevent the loss of population diversity during searching.To validate the efficacy of the proposed SCEO,a comprehensive evaluation is conducted on 15 classical benchmark functions and the CEC2017 test suite.The outcomes are subsequently benchmarked against both the conventional EO,its variants,and other cutting-edge metaheuristic techniques.The comparisons reveal that the SCEO method provides significantly superior results against the standard EO and other competitors.In addition,the developed SCEO is implemented to deal with a mobile robot path planning(MRPP)task,and compared to some classical metaheuristic approaches.The analysis results demonstrate that the SCEO approach provides the best performance and is a prospective tool for MRPP.展开更多
In recent time, data analysis using machine learning accelerates optimized solutions on clinical healthcare systems. The machine learning methods greatly offer an efficient prediction ability in diagnosis system alter...In recent time, data analysis using machine learning accelerates optimized solutions on clinical healthcare systems. The machine learning methods greatly offer an efficient prediction ability in diagnosis system alternative with the clinicians. Most of the systems operate on the extracted features from the patients and most of the predicted cases are accurate. However, in recent time, the prevalence of COVID-19 has emerged the global healthcare industry to find a new drug that suppresses the pandemic outbreak. In this paper, we design a Deep Neural Network(DNN)model that accurately finds the protein-ligand interactions with the drug used. The DNN senses the response of protein-ligand interactions for a specific drug and identifies which drug makes the interaction that combats effectively the virus. With limited genome sequence of Indian patients submitted to the GISAID database, we find that the DNN system is effective in identifying the protein-ligand interactions for a specific drug.展开更多
基金supported in part by the Natural Science Foundation of Jiangsu Province in China under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
文摘The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.
基金The research was supported by the Excellence Project PrF UHK No.2208/2021-2022,University of Hradec Kralove,Czech Republic.
文摘Finding a suitable solution to an optimization problem designed in science is a major challenge.Therefore,these must be addressed utilizing proper approaches.Based on a random search space,optimization algorithms can find acceptable solutions to problems.Archery Algorithm(AA)is a new stochastic approach for addressing optimization problems that is discussed in this study.The fundamental idea of developing the suggested AA is to imitate the archer’s shooting behavior toward the target panel.The proposed algorithm updates the location of each member of the population in each dimension of the search space by a member randomly marked by the archer.The AA is mathematically described,and its capacity to solve optimization problems is evaluated on twenty-three distinct types of objective functions.Furthermore,the proposed algorithm’s performance is compared vs.eight approaches,including teaching-learning based optimization,marine predators algorithm,genetic algorithm,grey wolf optimization,particle swarm optimization,whale optimization algorithm,gravitational search algorithm,and tunicate swarm algorithm.According to the simulation findings,the AA has a good capacity to tackle optimization issues in both unimodal and multimodal scenarios,and it can give adequate quasi-optimal solutions to these problems.The analysis and comparison of competing algorithms’performance with the proposed algorithm demonstrates the superiority and competitiveness of the AA.
基金PT(corresponding author)was supported by the Excellence project PrF UHK No.2202/2020-2022 and Long-term development plan of UHK for year 2021,University of Hradec Králové,Czech Republic,https://www.uhk.cz/en/faculty-of-science/about-faculty/offic ial-board/internal-regulations-and-governing-acts/governing-acts/deans-decision/2020#grant-competi tion-of-fos-uhk-excellence-for-2020.
文摘Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algorithms are one of the efficient and effective methods in providing quasioptimal solutions for these type of problems.In this study,a new algorithm called the Mutated Leader Algorithm(MLA)is presented.The main idea in the proposed MLA is to update the members of the algorithm population in the search space based on the guidance of a mutated leader.In addition to information about the best member of the population,themutated leader also contains information about the worst member of the population,as well as other normal members of the population.The proposed MLA is mathematically modeled for implementation on optimization problems.A standard set consisting of twenty-three objective functions of different types of unimodal,fixed-dimensional multimodal,and high-dimensional multimodal is used to evaluate the ability of the proposed algorithm in optimization.Also,the results obtained from theMLA are compared with eight well-known algorithms.The results of optimization of objective functions show that the proposed MLA has a high ability to solve various optimization problems.Also,the analysis and comparison of the performance of the proposed MLA against the eight compared algorithms indicates the superiority of the proposed algorithm and ability to provide more suitable quasi-optimal solutions.
基金PT(corresponding author)was supported by the Excelence project PˇrF UHK No.2202/2020-2022 and Long-term development plan of UHK for year 2021,University of Hradec Králové,Czech Republic,https://www.uhk.cz/en/faculty-of-science/about-faculty/officialboard/internal-regulations-and-governing-acts/governing-acts/deans-decision/2020#grant-competition-of-fos-uhk-excellence-for-2020.
文摘There are many optimization problems in different branches of science that should be solved using an appropriate methodology.Populationbased optimization algorithms are one of the most efficient approaches to solve this type of problems.In this paper,a new optimization algorithm called All Members-Based Optimizer(AMBO)is introduced to solve various optimization problems.The main idea in designing the proposedAMBOalgorithm is to use more information from the population members of the algorithm instead of just a few specific members(such as best member and worst member)to update the population matrix.Therefore,in AMBO,any member of the population can play a role in updating the population matrix.The theory of AMBO is described and then mathematically modeled for implementation on optimization problems.The performance of the proposed algorithm is evaluated on a set of twenty-three standard objective functions,which belong to three different categories:unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions.In order to analyze and compare the optimization results for the mentioned objective functions obtained by AMBO,eight other well-known algorithms have been also implemented.The optimization results demonstrate the ability of AMBO to solve various optimization problems.Also,comparison and analysis of the results show that AMBO is superior andmore competitive than the other mentioned algorithms in providing suitable solution.
文摘As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images.
基金PT(corresponding author)and SH was supported by the Excellence project PrF UHK No.2202/2020-2022Long-term development plan of UHK for year 2021,University of Hradec Králové,Czech Republic,https://www.uhk.cz/en/faculty-of-science/about-faculty/officia l-board/internal-regulations-and-governing-acts/governing-acts/deans-decision/2020#grant-compe tition-of-fos-uhk-excellence-for-2020.
文摘Finding the suitable solution to optimization problems is a fundamental challenge in various sciences.Optimization algorithms are one of the effective stochastic methods in solving optimization problems.In this paper,a new stochastic optimization algorithm called Search StepAdjustment Based Algorithm(SSABA)is presented to provide quasi-optimal solutions to various optimization problems.In the initial iterations of the algorithm,the step index is set to the highest value for a comprehensive search of the search space.Then,with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal,the step index is reduced to reach the minimum value at the end of the algorithm implementation.SSABA is mathematically modeled and its performance in optimization is evaluated on twenty-three different standard objective functions of unimodal and multimodal types.The results of optimization of unimodal functions show that the proposed algorithm SSABA has high exploitation power and the results of optimization of multimodal functions show the appropriate exploration power of the proposed algorithm.In addition,the performance of the proposed SSABA is compared with the performance of eight well-known algorithms,including Particle Swarm Optimization(PSO),Genetic Algorithm(GA),Teaching-Learning Based Optimization(TLBO),Gravitational Search Algorithm(GSA),Grey Wolf Optimization(GWO),Whale Optimization Algorithm(WOA),Marine Predators Algorithm(MPA),and Tunicate Swarm Algorithm(TSA).The simulation results show that the proposed SSABA is better and more competitive than the eight compared algorithms with better performance.
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.
基金support from the National Natural Science Foundation of China[Grant Nos.61461053,61461054,and 61072079]Yunnan Provincial Education Department Scientific Research Fund Project[2022Y008].
文摘The equilibrium optimizer(EO)represents a new,physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium.Despite its innovative foundation,the EO exhibits certain limitations,including imbalances between exploration and exploitation,the tendency to local optima,and the susceptibility to loss of population diversity.To alleviate these drawbacks,this paper introduces an improved EO that adopts three strategies:adaptive inertia weight,Cauchy mutation,and adaptive sine cosine mechanism,called SCEO.Firstly,a new update formula is conceived by incorporating an adaptive inertia weight to reach an appropriate balance between exploration and exploitation.Next,an adaptive sine cosine mechanism is embedded to boost the global exploratory capacity.Finally,the Cauchy mutation is utilized to prevent the loss of population diversity during searching.To validate the efficacy of the proposed SCEO,a comprehensive evaluation is conducted on 15 classical benchmark functions and the CEC2017 test suite.The outcomes are subsequently benchmarked against both the conventional EO,its variants,and other cutting-edge metaheuristic techniques.The comparisons reveal that the SCEO method provides significantly superior results against the standard EO and other competitors.In addition,the developed SCEO is implemented to deal with a mobile robot path planning(MRPP)task,and compared to some classical metaheuristic approaches.The analysis results demonstrate that the SCEO approach provides the best performance and is a prospective tool for MRPP.
文摘In recent time, data analysis using machine learning accelerates optimized solutions on clinical healthcare systems. The machine learning methods greatly offer an efficient prediction ability in diagnosis system alternative with the clinicians. Most of the systems operate on the extracted features from the patients and most of the predicted cases are accurate. However, in recent time, the prevalence of COVID-19 has emerged the global healthcare industry to find a new drug that suppresses the pandemic outbreak. In this paper, we design a Deep Neural Network(DNN)model that accurately finds the protein-ligand interactions with the drug used. The DNN senses the response of protein-ligand interactions for a specific drug and identifies which drug makes the interaction that combats effectively the virus. With limited genome sequence of Indian patients submitted to the GISAID database, we find that the DNN system is effective in identifying the protein-ligand interactions for a specific drug.