Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is...Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.展开更多
This paper discusses recent research findings together with management schemes in preventing and managing of thermal stress by handling external and internal factors in livestock production systems. Preventive measure...This paper discusses recent research findings together with management schemes in preventing and managing of thermal stress by handling external and internal factors in livestock production systems. Preventive measures against thermal stress are described as basic structural adjustments and the modifications that can be implemented readily, according to animal health and welfare requirements and refer to (1) environmental modification and thermal comfort in various housing systems; (2) action on animals, such as genetic selection for breeds resistant to infectious disease, parasites and climate extremes; (3) action on feed and (4) action on staff handling the animals. Moreover, measures to be taken both in situations of chronic thermal stress and heat or cold strokes are presented as they are applied to (1) limit stress, (2) monitor the temperature felt by animals, (3) adapt diet and drinking water supplies and (4) correct physiological imbalances. Examples are given for different farm species (cattle, sheep, goat, poultry and pigs) and different production systems (intensive, extensive and alternative). The paper concludes with a practical guide for the effective handling of thermal stress at farm level, summarizing the results from recent research studies on the specific topic.展开更多
基金performed in the Projects " LIGHTNESS : Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects" (No. 318606) "COSIGN: Combining Optics and SDN In next Generation data centre Networks" (No. 619572) supported by European Commission FP7
文摘Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.
文摘This paper discusses recent research findings together with management schemes in preventing and managing of thermal stress by handling external and internal factors in livestock production systems. Preventive measures against thermal stress are described as basic structural adjustments and the modifications that can be implemented readily, according to animal health and welfare requirements and refer to (1) environmental modification and thermal comfort in various housing systems; (2) action on animals, such as genetic selection for breeds resistant to infectious disease, parasites and climate extremes; (3) action on feed and (4) action on staff handling the animals. Moreover, measures to be taken both in situations of chronic thermal stress and heat or cold strokes are presented as they are applied to (1) limit stress, (2) monitor the temperature felt by animals, (3) adapt diet and drinking water supplies and (4) correct physiological imbalances. Examples are given for different farm species (cattle, sheep, goat, poultry and pigs) and different production systems (intensive, extensive and alternative). The paper concludes with a practical guide for the effective handling of thermal stress at farm level, summarizing the results from recent research studies on the specific topic.