期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Virus Removal by Iron Coagulation Processes
1
作者 Djamel Ghernaout Noureddine Elboughdiri +2 位作者 Badia Ghernaout ghulam abbas ashraf Mhamed Benaissa 《Green and Sustainable Chemistry》 2023年第3期171-208,共38页
Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus... Waterborne viruses account for 30% to 40% of infectious diarrhea, and some viruses could persevere for some months in nature and move up to 100 m in groundwater. Using filtration setups, coagulation could lessen virus charges as an efficient pre-treatment for reducing viruses. This work discusses the present-day studies on virus mitigation using coagulation in its three versions i.e., chemical coagulation (CC), enhanced coagulation, and electrocoagulation (EC), and debates the new results of virus demobilization. The complexity of viruses as bioparticles and the process of virus demobilization should be adopted, even if the contribution of permeability in virus sorption and aggregation needs to be clarified. The information about virion permeability has been evaluated by interpreting empirical electrophoretic mobility (EM). No practical measures of virion permeability exist, a clear link between permeability and virion composition and morphology has not been advanced, and the direct influence of inner virion structures on surface charge or sorption has yet to be conclusively demonstrated. CC setups utilizing zero-valent or ferrous iron could be killed by iron oxidation, possibly using EC and electrooxidation (EO) methods. The oxidants evolution in the iron oxidation method has depicted promising findings in demobilizing bacteriophage MS2, even if follow-up investigations employing an elution method are needed to secure that bacteriophage elimination is related to demobilization rather than sorption. As a perspective, we could be apt to anticipate virus conduct and determine new bacteriophage surrogates following subtle aspects such as protein structures or genome size and conformation. The present discussion’s advantages would extend far beyond an application in CC—from filtration setups to demobilization by nanoparticles to modeling virus fate and persistence in nature. 展开更多
关键词 Viruses Chemical Coagulation (CC) Enhanced Coagulation (EnC) Electrocoagulation (EC) Electrophoretic Mobility (EM) Natural Organic Matter (NOM)
下载PDF
Nanoscaled MnSnO_(2)@CsPbBr_(3) quantum dots heterostructure photocatalyst as efficient organic pollutants degradation by peroxymonosulfate;DFT calculation
2
作者 Raqiqa Tur Rasool ghulam abbas ashraf +4 位作者 Mohsin Pasha Muhammad Farooq Saleem Djamel Ghernaout Mohammed M.Fadhali Hai Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第22期41-55,共15页
In this work,we developed a promising photocatalyst in CsPbBr_(3) quantum dots(QDs)because of their exceptional optoelectronic characteristics.However,QDs applications in the field of photocatalysis were mainly hamper... In this work,we developed a promising photocatalyst in CsPbBr_(3) quantum dots(QDs)because of their exceptional optoelectronic characteristics.However,QDs applications in the field of photocatalysis were mainly hampered by their poor stability and insufficient charge transfer efficiency.Herein,a novel and efficient MnSnO_(2)@CsPbBr_(3)(MSO@QDs)nanocomposite was first time effectively designed and synthe-sized by a wet impregnation method for peroxymonosulfate(PMS)activation under the light.The newly generated interface phase of QDs between MnSnO_(2)(MSO)showed great potential to improve light ab-sorption,leading to effective separation and transfer of photoelectron-hole pairs.This novel nanocompos-ite MSO@QDs showed great Flurbiprofen(FL)removal efficiency under the PMS/Light system.It should be noted that this nanocomposite removed 85.74%of FL in just 70 min,which was almost 1.11 and 2.51 times greater than using pure QDs and pure MSO,respectively.Based on thorough measurements of structural analysis,Brunauer-Emmett-Teller(BET),UV-vis spectra,electrochemical impedance spec-troscopy(EIS),transient photocurrent response,and a potential mechanism for organic pollutants degra-dation over MSO@QDs nanocomposite was envisioned.The principal reactive species of photoinduced holes(h^(+)),i.e.O_(2)^(˙−),SO_(4)^(˙−),^(˙)OH,and non-radical(^(1)O_(2))were characterized via scavengers’technique and electron paramagnetic resonance(EPR)measurements.The highest photocatalytic performance for the re-moval of MO,MB,and IBU was demonstrated by MSO@QDs nanocomposite/PMS,revealing their excellent ability to remove organic pollutants through photo-oxidation.Furthermore,the developed nanocompos-ite exhibited good stability in an aqueous medium.According to computational investigation using the density functional theory(DFT)method,the site’s higher Fukui index f^(0) value corresponds to a greater propensity to be attacked by reactive species.This work offers a fresh perspective on developing further high-efficiency,low-cost photocatalysts for wastewater treatment. 展开更多
关键词 CsPbBr_(3)QDs MnSnO_(2) PEROXYMONOSULFATE NANOCOMPOSITE PHOTOCATALYST Organic pollutants DFT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部