This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes o...This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.展开更多
This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillator...This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six.展开更多
This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscill...This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscillators. From the didactic hypotheses of the model emerges an in-depth phenomenology of particles that is fully compatible with that of SM. Thanks to this model, we can calculate “geometrically” the mass of Higgs’s Boson and the mass of the pair “muon and muonic neutrino”, and, by the geometric shapes of leptons and bosons, we can also solve crucial aspects of SM physics as the neutrinos’ oscillations and the intrinsic chirality of the neutrino and antineutrino.展开更多
We formulate the idea of a Universe crossing different evolving phases where in each phase one can define a basic field at lattice structure (Uk) increasing in mass (Universe-lattice). The mass creation in Uk has a do...We formulate the idea of a Universe crossing different evolving phases where in each phase one can define a basic field at lattice structure (Uk) increasing in mass (Universe-lattice). The mass creation in Uk has a double consequence for the equivalence “mass-space”: Increasing gravity (with varying metric) and increasing space (expansion). We demonstrate that each phase is at variable metric beginning by open metric and to follow a flat metric and after closed. Then we define the lattice-field of intersection between two lattice fields of base into universe and we analyse the universe in the Nucleo-synthesis phase (intersection-lattice ) and in the that of recombination (intersection-lattice ). We show that the phase is built on the intersection of the lattices of the proton (Up) and electron (Ue) or . We show UH to be at variable metric (open in the past, flat in the present and closed in the future). Then, we explain some fundamental aspects of this universe UH: Hubble’s law by creating the mass-space in it, its age (13.82 million of Years) as time for reaching the flat metric phase and the value of critic density. In last we talk about dark universe lattice , having hadronic nature, and calculating its spatial step and its density in present phase of .展开更多
In this paper we complete the relativistic cosmological theory because we extend the variational principle including variations of metric induced by expansion of the space. We will show that the mass not only curves S...In this paper we complete the relativistic cosmological theory because we extend the variational principle including variations of metric induced by expansion of the space. We will show that the mass not only curves Space and Time but also generates them: we’ll speak of the principle of mass-space equivalence. Then the increasing mass generates variations of metric as also the space increasing or expansion. So, the dark component of the mass generates additional gravity around galaxies as well as additional space, which generates a pressure (dark energy) accelerating the galaxies in their move away. All this could explain the cosmic coincidence (Ωdm/Ωde ≈ 1). To talk about the increasing mass is equivalent to speak of mass creation in universe, causing the variation of the tensor (T) mass-energy tensor of all component fields. We conjecture that its variation is caused by mass-energy flow comes out from a physical system (Θ) composed by set of uncoupled quantum oscillators (structure of no-field) in vacuum state. All this allows formulating a variational principle which generates the cosmological equation with the (Λ) parameter and a tensor T* with variable mass density, where T*(T, Θ).展开更多
文摘This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.
文摘This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six.
文摘This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscillators. From the didactic hypotheses of the model emerges an in-depth phenomenology of particles that is fully compatible with that of SM. Thanks to this model, we can calculate “geometrically” the mass of Higgs’s Boson and the mass of the pair “muon and muonic neutrino”, and, by the geometric shapes of leptons and bosons, we can also solve crucial aspects of SM physics as the neutrinos’ oscillations and the intrinsic chirality of the neutrino and antineutrino.
文摘We formulate the idea of a Universe crossing different evolving phases where in each phase one can define a basic field at lattice structure (Uk) increasing in mass (Universe-lattice). The mass creation in Uk has a double consequence for the equivalence “mass-space”: Increasing gravity (with varying metric) and increasing space (expansion). We demonstrate that each phase is at variable metric beginning by open metric and to follow a flat metric and after closed. Then we define the lattice-field of intersection between two lattice fields of base into universe and we analyse the universe in the Nucleo-synthesis phase (intersection-lattice ) and in the that of recombination (intersection-lattice ). We show that the phase is built on the intersection of the lattices of the proton (Up) and electron (Ue) or . We show UH to be at variable metric (open in the past, flat in the present and closed in the future). Then, we explain some fundamental aspects of this universe UH: Hubble’s law by creating the mass-space in it, its age (13.82 million of Years) as time for reaching the flat metric phase and the value of critic density. In last we talk about dark universe lattice , having hadronic nature, and calculating its spatial step and its density in present phase of .
文摘In this paper we complete the relativistic cosmological theory because we extend the variational principle including variations of metric induced by expansion of the space. We will show that the mass not only curves Space and Time but also generates them: we’ll speak of the principle of mass-space equivalence. Then the increasing mass generates variations of metric as also the space increasing or expansion. So, the dark component of the mass generates additional gravity around galaxies as well as additional space, which generates a pressure (dark energy) accelerating the galaxies in their move away. All this could explain the cosmic coincidence (Ωdm/Ωde ≈ 1). To talk about the increasing mass is equivalent to speak of mass creation in universe, causing the variation of the tensor (T) mass-energy tensor of all component fields. We conjecture that its variation is caused by mass-energy flow comes out from a physical system (Θ) composed by set of uncoupled quantum oscillators (structure of no-field) in vacuum state. All this allows formulating a variational principle which generates the cosmological equation with the (Λ) parameter and a tensor T* with variable mass density, where T*(T, Θ).