Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
The fission yield data in the 14 MeV energy neutron induced fission of^(238)U play an important role in decay heat calculations and generation-Ⅳ reactor designs.In order to accurately measure fission product yields(F...The fission yield data in the 14 MeV energy neutron induced fission of^(238)U play an important role in decay heat calculations and generation-Ⅳ reactor designs.In order to accurately measure fission product yields(FPYs)of^(238)U induced by 14 MeV neutrons,the cumulative yields of fission products ranging from^(92)Sr to^(147)Nd in the^(239)U(n,f) reaction with a 14.7 MeV neutron were determined using an off-line γ-ray spectrometric technique.The14.7 MeV quasi-monoenergetic neutron beam was provided by the K-400 D-T neutron generator at China Academy of Engineering Physics(CAEP).Fission products were measured by a low background high purity germanium gamma spectrometer.The neutron flux was obtained from the^(93)Nb(n.2n)^(92m)Nb reaction,and the mean neutron energy was calculated using the cross-section ratios for the^(90)Zr(n,2n)^(89)Zr and^(93)Nb(n,2n)^(92m)Nb reactions.With a series of corrections,high precision cumulative yields of 20 fission products were obtained.Our FPYs for the^(238)U(n,f) reaction at 14.7 MeV were compared with the existing experimental nuclear reaction data and evaluated nuclear data,respectively.The results will be helpful in the design of a generation-Ⅳ reactor and the construction of evaluated fission yield databases.展开更多
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金Supported by the National Natural Science Foundation of China (11975113)。
文摘The fission yield data in the 14 MeV energy neutron induced fission of^(238)U play an important role in decay heat calculations and generation-Ⅳ reactor designs.In order to accurately measure fission product yields(FPYs)of^(238)U induced by 14 MeV neutrons,the cumulative yields of fission products ranging from^(92)Sr to^(147)Nd in the^(239)U(n,f) reaction with a 14.7 MeV neutron were determined using an off-line γ-ray spectrometric technique.The14.7 MeV quasi-monoenergetic neutron beam was provided by the K-400 D-T neutron generator at China Academy of Engineering Physics(CAEP).Fission products were measured by a low background high purity germanium gamma spectrometer.The neutron flux was obtained from the^(93)Nb(n.2n)^(92m)Nb reaction,and the mean neutron energy was calculated using the cross-section ratios for the^(90)Zr(n,2n)^(89)Zr and^(93)Nb(n,2n)^(92m)Nb reactions.With a series of corrections,high precision cumulative yields of 20 fission products were obtained.Our FPYs for the^(238)U(n,f) reaction at 14.7 MeV were compared with the existing experimental nuclear reaction data and evaluated nuclear data,respectively.The results will be helpful in the design of a generation-Ⅳ reactor and the construction of evaluated fission yield databases.