The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.