期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Density functional theory study of active sites and reaction mechanism of ORR on Pt surfaces under anhydrous conditions 被引量:1
1
作者 guangdong liu Huiqiu Deng +1 位作者 Jeffrey Greeley Zhenhua Zeng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第12期3126-3133,共8页
Identifying active sites and catalytic mechanism of the oxygen reduction reaction under anhydrous conditions are crucial for the development of next generation proton exchange membrane fuel cells(PEMFCs)operated at a ... Identifying active sites and catalytic mechanism of the oxygen reduction reaction under anhydrous conditions are crucial for the development of next generation proton exchange membrane fuel cells(PEMFCs)operated at a temperature>100℃.Here,by employing density functional theory calculations,we studied ORR on flat and stepped Pt(111)surfaces with both(110)and(100)type of steps.We found that,in contrast to ORR under hydrous conditions,(111)terrace sites are not active for ORR under anhydrous conditions,because of weakened binding of ORR intermediates induced by O*accumulation on the surface.On the other hand,step edges,which are generally not active for ORR under hydrous conditions,are predicted to be the active sites for ORR under anhydrous conditions.Among them,(110)type step edge with a unique configuration of accumulated O stabilizes O_(2)adsorption and facilitates O_(2)dissociation,which lead an overpotential<0.4 V.To improve ORR catalysts in high-temperature PEMFCs,it is desirable to maximize(110)step edge sites that present between two(111)facets of nanoparticles. 展开更多
关键词 Oxygen reduction Active site Anhydrous condition High-temperature PEMFCs Density functional theory
下载PDF
Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe–Ni–Al alloy 被引量:1
2
作者 Huaqiang Chen Lin Lang +7 位作者 Shuaiyu Yi Jinlong Du guangdong liu Lixia liu Yufei Wang Yuehui Wang Huiqiu Deng Engang Fu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期113-119,共7页
The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics(MD)simulati... The short-range repulsive interactions of any force field must be modified to be applicable for high energy atomic collisions because of extremely far from equilibrium state when used in molecular dynamics(MD)simulations.In this work,the short-range repulsive interaction of a reactive force field(ReaxFF),describing Fe-Ni-Al alloy system,is well modified by adding a tabulated function form based on Ziegler-Biersack-Littmark(ZBL)potential.The modified interaction covers three ranges,including short range,smooth range,and primordial range.The short range is totally predominated by ZBL potential.The primordial range means the interactions in this range is the as-is ReaxFF with no changes.The smooth range links the short-range ZBL and primordial-range ReaxFF potentials with a taper function.Both energies and forces are guaranteed to be continuous,and qualified to the consistent requirement in LAMMPS.This modified force field is applicable for simulations of energetic particle bombardments and reproducing point defects'booming and recombination effectively. 展开更多
关键词 molecular dynamics force field modification Fe–Ni–Al alloy irradiation
下载PDF
基于声学散射透镜的低成本光声断层成像方法
3
作者 何君君 殷杰 +1 位作者 刘广东 马倩倩 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期231-238,共8页
光声断层成像需要使用换能器阵列及多通道系统,硬件成本较高,制约了其广泛应用.为降低成本,设计了一种基于声学散射透镜的光声断层成像方法,利用声学多重散射过程中的多路径效应达到增大探测阵列等效数值孔径的作用,从而减少信号探测过... 光声断层成像需要使用换能器阵列及多通道系统,硬件成本较高,制约了其广泛应用.为降低成本,设计了一种基于声学散射透镜的光声断层成像方法,利用声学多重散射过程中的多路径效应达到增大探测阵列等效数值孔径的作用,从而减少信号探测过程所需换能器数量.通过数值模拟实验,首先分析了散射透镜格林函数的精确测量方法,随后利用四个散射透镜共同作用实现了高质量光声断层成像,并对影响成像质量的相关因素进行了具体研究.提出的散射透镜无须复杂制作工艺或特殊材料,系统只需四个超声换能器即可实现快速成像,可降低光声断层成像系统的硬件成本. 展开更多
关键词 光声断层成像 低成本 散射透镜 格林函数
下载PDF
A strategy to improve the electrochemical performance of Ni-rich positive electrodes:Na/F-co-doped LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)
4
作者 Hui Wan Zhixiao liu +5 位作者 guangdong liu Shuaiyu Yi Fei Gao Huiqiu Deng Dingwang Yuan Wangyu Hu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期184-191,共8页
Ni-rich layered lithium transition metal oxides LiNi_xMn_yCo_zO_(2)(1-y-z≥0.6)are promising candidates for cathode materials,but their practical applications are hindered by high-voltage instability and fast capacity... Ni-rich layered lithium transition metal oxides LiNi_xMn_yCo_zO_(2)(1-y-z≥0.6)are promising candidates for cathode materials,but their practical applications are hindered by high-voltage instability and fast capacity fading.Using density functional theory calculations,we demonstrate that Na-,F-doping,and Na/F-co-doping can stabilize the structure and result into a higher open circuit voltage than pristine LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)(NMC622)during the charging process,which may attain greater discharge capacity.F doping may inhibit the diffusion of Li ions at the beginning and end of charging;Na doping may improve Li ion diffusion due to the increase in Li layer spacing,consistent with prior experiments.Na/F-codoping into NMC622 promotes rate performance and reduces irreversible phase transitions for two reasons:(i)a synergistic effect between Na and F can effectively restrain the Ni/Li mixing and then enhances the mobility of Li ions and(ii)Ni/Li mixing hinders the Ni ions to migrate into Li layers and thus,stabilizes the structure.This study proposes that a layer cathode material with high electrochemical performance can be achieved via rational dopant modification,which is a promising strategy for designing efficient Li ion batteries. 展开更多
关键词 Li ion batteries ion diffusion Na/F-co-doping first-principles calculations
下载PDF
Ambient formaldehyde concentrations in summer in 30 Chinese cities and impacts on air cleaning of built environment
5
作者 Shuolin Qiu Zirui He +11 位作者 guangdong liu Zhen Ding Zhongming Bu Jianping Cao Wenjing Ji Wei liu Chunxiao Su Xinke Wang Fan liu Ting Li Hua Qian Cong liu 《Energy and Built Environment》 EI 2024年第4期493-499,共7页
Formaldehyde is an important carcinogen commonly found indoors.Its indoor sources have been intensively in-vestigated.But study on outdoor formaldehyde concentration,which is potentially an important source to indoors... Formaldehyde is an important carcinogen commonly found indoors.Its indoor sources have been intensively in-vestigated.But study on outdoor formaldehyde concentration,which is potentially an important source to indoors,remains scarce.This study attempts to characterize temporal and spatial distribution of the atmospheric formalde-hyde concentration in Chinese cities.Diurnal variation of ambient formaldehyde was examined in 6 cities and peak hours were identified between 12:00 pm and 3:00 pm.Consequently,outdoor formaldehyde concentrations were measured in the peak hours in 30 cities during the summer months of Jul.-Aug.,2022.The formaldehyde concentrations in the peak hours fell into a range of 0.005-0.087 mg/m^(3)(median value is 0.027 mg/m^(3)),87.7%of which have exceeded the chronic reference exposure criteria of 0.009 mg/m^(3) set by Office of Environmental Health Hazard Assessment.Health risk analysis suggests that exposure to ambient formaldehyde could cause a median carcinogenic risk of 1.9×10^(−5)(3.17×10^(−6)-6.13×10^(−5)),higher than threshold limit of 10−6.Pearson correlation analysis of the 30 cities shows that ambient summertime atmospheric formaldehyde concentrations of the city are positively correlated with its Gross Domestic Product(r=0.48).We also found that the outdoor formaldehyde concentrations in urban areas(median:0.017 mg/m^(3))is slightly higher than those in suburban areas(median:0.013 mg/m^(3)).Results here prove that outdoor formaldehyde is ubiquitous in Chinese cities and reduces effectiveness of ventilation in dilution indoor concentrations.Neglecting it would underestimate air cleaner capacity needed by a factor of about two.It should be accounted for in health analysis and air quality engineering control design of built environment in the future. 展开更多
关键词 Atmospheric formaldehyde Temporal distribution Health risk Ventilation efficiency
原文传递
Engineering the high-entropy phase of Pt-Au-Cu nanowire for electrocatalytic hydrogen evolution 被引量:2
6
作者 Yanan Yu guangdong liu +6 位作者 Shuaihu Jiang Ruya Zhang Huiqiu Deng Eric AStach Shujuan Bao Zhenhua Zeng Yijin Kang 《Nano Research》 SCIE EI CSCD 2023年第8期10742-10747,共6页
Hydrogen economy,as the most promising alternative energy system,relies on the hydrogen production through sustainable water splitting which in turn relies on the high efficiency electrocatalysts.PtAuCu A1-phase alloy... Hydrogen economy,as the most promising alternative energy system,relies on the hydrogen production through sustainable water splitting which in turn relies on the high efficiency electrocatalysts.PtAuCu A1-phase alloy has been predicted to be a promising electrocatalyst for the hydrogen evolution.As such preferred phase of Pt-Au-Cu is not thermodynamically favored,herein,we stabilize PtAuCu alloy by engineering the high-entropy phase in the form of nanowire.Density functional theory(DFT)calculations indicate that,in comparison with the ordered phase and segregated phases with discrete hydrogen binding energy,the high-entropy phase provides a diverse combination of site composition to continuously tune the hydrogen binding energy,and thus generate a series of highly active sites for the hydrogen evolution.Reflecting the theoretical prediction,electrochemical tests show that the A1-phase PtAuCu nanowire significantly outperforms its nanoparticle counterpart with phase segregation,toward the electrocatalysis of hydrogen evolution,offering one of the best hydrogen evolution electrocatalysts. 展开更多
关键词 hydrogen evolution reaction phase engineering high entropy alloys
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部