期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Long‐life lithium batteries enabled by a pseudo‐oversaturated electrolyte
1
作者 Youchun Yu Simeng Wang +6 位作者 Juyan Zhang Weiwei Qian Nana Zhang guangjie shao Haiyan Bian Yuwen Liu Lan Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期115-127,共13页
The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging f... The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte.Herein,a novel pseudo‐oversaturated electrolyte(POSE)is prepared by introducing 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether(TTE)to adjust the coordination structure between diglyme(G2)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI).Surprisingly,although TTE shows little solubility to LiTFSI,the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1,which is much higher than that of the saturation state,1:2.8.Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li^(+)in the POSE.Moreover,it also participates in the formation of electrolyte/electrode interphases.The electrolyte shows outstanding compatibility with both the Li metal anode and typical high‐voltage cathodes.Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm^(−2),1 mAh cm^(−2).In the meantime,Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cell with the POSE shows a high reversible capacity of 134.8 mAh g^(−1 )after 900 cycles at 4.5 V,1 C rate.The concept of POSE can provide new insight into the Li^(+)solvation structure and in the design of advanced electrolytes for LMBs. 展开更多
关键词 high voltage lithium metal batteries pseudo‐oversaturated electrolyte solid electrolyte interphases(SEI) solvation structure
下载PDF
Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries 被引量:3
2
作者 Rui Gao Zhenyu Wang +2 位作者 Sheng Liu guangjie shao Xueping Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期990-1002,共13页
Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of _(2)600 W·h·kg^(−1).However,their commercialization is limited by poor cycle sta... Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of _(2)600 W·h·kg^(−1).However,their commercialization is limited by poor cycle stability mainly due to the low intrinsic electrical conductivity of sulfur and its discharged products(Li_(2)S_(2)/Li_(2)S),the sluggish reaction kinetics of sulfur cathode,and the“shuttle effect”of soluble intermediate lithi-um polysulfides in ether-based electrolyte.To address these challenges,catalytic hosts have recently been introduced in sulfur cathodes to en-hance the conversion of soluble polysulfides to the final solid products and thus prevent the dissolution and loss of active-sulfur material.In this review,we summarize the recent progress on the use of metal phosphides and borides of different dimensions as the catalytic host of sulfur cathodes and demonstrate the catalytic conversion mechanism of sulfur cathodes with the help of metal phosphides and borides for high-en-ergy and long-life lithium-sulfur batteries.Finally,future outlooks are proposed on developing advanced catalytic host materials to improve battery performance. 展开更多
关键词 lithium–sulfur batteries sulfur cathode catalytic host metal phosphides metal borides
下载PDF
Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction 被引量:1
3
作者 Ailing Song Hao Tian +5 位作者 Wang Yang Wu Yang Yuhan Xie Hao Liu Guoxiu Wang guangjie shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期630-636,共7页
Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysi... Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysis.Considering the challenge of serious aggregation,rational synthesis of an atomic catalyst with good dispersion of atoms is paramount to the development of these catalysts.Herein,we report an enhanced confinement strategy to synthesize a catalyst comprised of atomically dispersed Fe supported on porous nitrogen-doped graphitic carbon from the novel and more cross-linkable Melamine-Glyoxal Resin.Densified isolated grid trapping,excessive melamine restricting,and nitrogen anchoring are strongly combined to ensure the final atomic-level dispersion of metal atoms.Experimental studies revealed enhanced kinetics of the obtained catalyst towards oxygen reduction reaction(ORR).This catalytic activity originates from the highly active surface with atomically dispersed iron sites as well as the multi-level three-dimensional structure with fast mass and electron transfer.The enhanced confinement strategy endows the resin-derived atomic catalyst with a great prospect to develop for commercialization in future. 展开更多
关键词 Non-precious metal catalysts Atomic catalyst Oxygen reduction reaction Confinement synthesis
下载PDF
后处理技术提升燃料电池催化剂稳定性 被引量:1
4
作者 刘洋洋 赵子刚 +3 位作者 孙浩 孟祥辉 邵光杰 王振波 《化学进展》 SCIE CAS CSCD 北大核心 2022年第4期973-982,共10页
燃料电池属于一种可再生的新能源技术,不经过热机过程,不受卡诺循环限制,通过电极和电解质界面的化学反应直接将燃料的化学能转化为电能,所以能量转化效率高,且没有噪声和污染。质子交换膜燃料电池(PEMFC)是燃料电池中应用最广泛的一类,... 燃料电池属于一种可再生的新能源技术,不经过热机过程,不受卡诺循环限制,通过电极和电解质界面的化学反应直接将燃料的化学能转化为电能,所以能量转化效率高,且没有噪声和污染。质子交换膜燃料电池(PEMFC)是燃料电池中应用最广泛的一类,但PEMFC仍然存在一些问题,如成本高、功率密度低和催化剂稳定性差等。因此实现质子交换膜燃料电池大规模应用,研究开发高活性和高稳定性的催化剂是重中之重。针对燃料电池催化剂高活性和高稳定性的要求,本文综述了燃料电池催化剂的研究进展和性能改进方法。从活性组分和载体两个角度对提升燃料电池稳定性的方法展开论述。通过减小活性组分颗粒的直径、制备具有特定取向表面的铂颗粒、铂与过渡金属的合金化、载体的改性等方式来改善催化剂的性能。最后提出了燃料电池催化剂未来的发展方向以及在实际应用过程中面临的主要问题。 展开更多
关键词 质子交换膜燃料电池 贵金属催化剂 稳定性 活性组分 载体
原文传递
Recent advances in high-loading catalysts for low-temperature fuel cells: From nanoparticle to single atom 被引量:7
5
作者 Lixiao Shen Miao Ma +6 位作者 Fengdi Tu Zigang Zhao Yunfei Xia Kokswee Goh Lei Zhao Zhenbo Wang guangjie shao 《SusMat》 2021年第4期569-592,共24页
Low-temperature fuel cells(LTFCs)are considered to be one of the most promising power sources for widespread application in sustainable and renew-able energy conversion technologies.Although remarkable advances have b... Low-temperature fuel cells(LTFCs)are considered to be one of the most promising power sources for widespread application in sustainable and renew-able energy conversion technologies.Although remarkable advances have been made in the mass activity of catalysts,mass transport impedance needs to be urgently addressed at a well-designed membrane electrode assembly(MEA)scale.Increasing the loading of electrocatalysts is conducive to prepare thinner and more efficient MEAs owing to the resulting enhanced reactant permeability,better proton diffusion,and lower electrical resistance.Herein,recent progress in high-loading(≥40 wt.%)Pt nanoparticle catalysts(NPCs)and high-loading(≥2 wt.%)single-atom catalysts(SACs)for LTFC applications are reviewed.A summary of various synthetic approaches and support materials for high-loading Pt NPCs and SACs is systematically presented.The influences of high surface area and appropriate surface functionalization for Pt NPCs,as well as coordina-tion environment,spatial confinement effect,and strong metal-support interac-tions(SMSI)for SACs are highlighted.Additionally,this review presents some ideas regarding challenges and future opportunities of high-loading catalysts in the application of LTFCs. 展开更多
关键词 high-loading catalysts low-temperature fuel cells membrane electrode assembly nanoparticle catalysts single-atom catalysts
原文传递
Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction
6
作者 Na SUN Minglei WANG +3 位作者 Jinfa CHANG Junjie GE Wei XING guangjie shao 《Frontiers in Energy》 SCIE CSCD 2017年第3期310-317,共8页
Pd nanoparticles supported on nitrogen doped carbon black (Vulcan XC-72R) with two different levels of doping were prepared by the microwave-assisted ethylene glycol reduction process and used as catalyst for the fo... Pd nanoparticles supported on nitrogen doped carbon black (Vulcan XC-72R) with two different levels of doping were prepared by the microwave-assisted ethylene glycol reduction process and used as catalyst for the formic acid electro-oxidation (FAEO). The results indicate that the different nitrogen doping contents in Pd/N-C catalysts have a significant effect on the performance of FAEO. A higher N content facilitates the uniform dispersion of Pd nanoparticles on carbon black with narrow particle size distribution. Furthermore, the electrochemical results show that the catalyst with a higher N-doping content possesses a higher catalytic activity and a long-term stability for FAEO. The peak current density of the Pd/N-C (high) catalyst is 1.27 and 2.31 times that of the Pd/N-C (low) and homemade Pd/C-H catalyst. The present paper may provide a simple method for preparation of high-performance anode catalyst for direct formic acid fuel cells (DFAFCs). 展开更多
关键词 formic acid electro-oxidation nitrogen doped oxidized carbon nitrogen content
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部