期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on Site Planning of Mobile Communication Network
1
作者 Jiahan He guangjun liang +3 位作者 Meng Li KefanYao Bixia Wang Lu Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期3243-3261,共19页
In this paper,considering the cost of base station,coverage,call quality,and other practical factors,a multi-objective optimal site planning scheme is proposed.Firstly,based on practical needs,mathematical modeling me... In this paper,considering the cost of base station,coverage,call quality,and other practical factors,a multi-objective optimal site planning scheme is proposed.Firstly,based on practical needs,mathematical modeling methods were used to establish mathematical expressions for the three sub-objectives of cost objectives,coverage objectives,and quality objectives.Then,a multi-objective optimization model was established by combining threshold and traffic volume constraints.In order to reduce the time complexity of optimization,a non-dominated sorting genetic algorithm(NSGA)is used to solve the multi-objective optimization problem of site planning.Finally,a strategy for clustering and optimizing weak coverage areas was proposed.In order to avoid redundant neighborhood retrieval during cluster expansion,the Fast Density-Based Spatial Clustering of Applications with Noise(FDBSCAN)clustering method was adopted.With different sub-objectives as the main objectives,this paper obtained the distribution map of weak coverage areas before and after the establishment of new base stations,as well as relevant site planning maps,and provided three planning schemes for different main objectives.The simulation results show that the traffic coverage of the three station planning schemes is above 90%.The change in the main optimization objective will result in a significant difference between the cost of the three solutions and the coverage of weak coverage points. 展开更多
关键词 Siting of station multi-objective optimization genetic algorithm NSGA general greed FDBSCAN cluster
下载PDF
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
2
作者 Xiangmin Guo guangjun liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing Hybridized Data Driven Cognitive Computing(HD2C) Federated Learning(FL) Proof of Authority(PoA)
下载PDF
An Early Warning Model of Telecommunication Network Fraud Based on User Portrait
3
作者 Wen Deng guangjun liang +3 位作者 Chenfei Yu Kefan Yao Chengrui Wang Xuan Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1561-1576,共16页
With the frequent occurrence of telecommunications and networkfraud crimes in recent years, new frauds have emerged one after another whichhas caused huge losses to the people. However, due to the lack of an effective... With the frequent occurrence of telecommunications and networkfraud crimes in recent years, new frauds have emerged one after another whichhas caused huge losses to the people. However, due to the lack of an effectivepreventive mechanism, the police are often in a passive position. Usingtechnologies such as web crawlers, feature engineering, deep learning, andartificial intelligence, this paper proposes a user portrait fraudwarning schemebased on Weibo public data. First, we perform preliminary screening andcleaning based on the keyword “defrauded” to obtain valid fraudulent userIdentity Documents (IDs). The basic information and account information ofthese users is user-labeled to achieve the purpose of distinguishing the typesof fraud. Secondly, through feature engineering technologies such as avatarrecognition, Artificial Intelligence (AI) sentiment analysis, data screening,and follower blogger type analysis, these pictures and texts will be abstractedinto user preferences and personality characteristics which integrate multidimensionalinformation to build user portraits. Third, deep neural networktraining is performed on the cube. 80% percent of the data is predicted basedon the N-way K-shot problem and used to train the model, and the remaining20% is used for model accuracy evaluation. Experiments have shown thatFew-short learning has higher accuracy compared with Long Short TermMemory (LSTM), Recurrent Neural Networks (RNN) and ConvolutionalNeural Network (CNN). On this basis, this paper develops a WeChat smallprogram for early warning of telecommunications network fraud based onuser portraits. When the user enters some personal information on the frontend, the back-end database can perform correlation analysis by itself, so as tomatch the most likely fraud types and give relevant early warning information.The fraud warning model is highly scaleable. The data of other Applications(APPs) can be extended to further improve the efficiency of anti-fraud whichhas extremely high public welfare value. 展开更多
关键词 CRAWLER user portrait feature engineering deep learning small program development
下载PDF
Research on Metaverse Security and Forensics
4
作者 guangjun liang Jianfang Xin +3 位作者 Qun Wang Xueli Ni Xiangmin Guo Pu Chen 《Computers, Materials & Continua》 SCIE EI 2023年第10期799-825,共27页
As a subversive concept,the metaverse has recently attracted widespread attention around the world and has set off a wave of enthusiasm in academic,industrial,and investment circles.However,while the metaverse brings ... As a subversive concept,the metaverse has recently attracted widespread attention around the world and has set off a wave of enthusiasm in academic,industrial,and investment circles.However,while the metaverse brings unprecedented opportunities for transformation to human society,it also contains related risks.Metaverse is a digital living space with information infrastructure,interoperability system,content production system,and value settlement system as the underlying structure in which the inner core is to connect real residents through applications and identities.Through social incentives and governance rules,the metaverse reflects the digital migration of human society.This article will conduct an in-depth analysis of the metaverse from the perspective of electronic data forensics.First,from the perspective of Internet development,the background and development process of the metaverse is discussed.By systematically elaborating on the concept and connotation of the metaverse,this paper summarizes the different views of current practitioners,experts,and scholars on the metaverse.Secondly,from the perspective of metaverse security,the social risk and crime risks of the metaverse are discussed.Then the importance of metaverse forensics is raised.Third,from the perspective of blockchain,smart wearable devices,and virtual reality devices,the objects and characteristics of metaverse forensics have been studied in depth.Taking smart wearable devices as an example,this paper gives the relevant experimental process of smart bracelet forensics.Finally,many challenges faced by metaverse forensics are summarized by us which provide readers with some exploratory guidance. 展开更多
关键词 Metaverse FORENSICS blockchain smart wear virtual reality
下载PDF
Analysis on D2D Heterogeneous Networks with State-Dependent Priority Traffic
5
作者 guangjun liang Jianfang Xin +2 位作者 Linging Xia Xueli Ni Yi Cao 《Computers, Materials & Continua》 SCIE EI 2023年第2期2981-2998,共18页
In this work,we consider the performance analysis of state dependent priority traffic and scheduling in device to device(D2D)heterogeneous networks.There are two priority transmission types of data in wireless communi... In this work,we consider the performance analysis of state dependent priority traffic and scheduling in device to device(D2D)heterogeneous networks.There are two priority transmission types of data in wireless communication,such as video or telephone,which always meet the requirements of high priority(HP)data transmission first.If there is a large amount of low priority(LP)data,there will be a large amount of LP data that cannot be sent.This situation will cause excessive delay of LP data and packet dropping probability.In order to solve this problem,the data transmission process of high priority queue and low priority queue is studied.Considering the priority jump strategy to the priority queuing model,the queuing process with two priority data is modeled as a two-dimensionalMarkov chain.A state dependent priority jump queuing strategy is proposed,which can improve the discarding performance of low priority data.The quasi birth and death process method(QBD)and fixed point iterationmethod are used to solve the causality,and the steady-state probability distribution is further obtained.Then,performance parameters such as average queue length,average throughput,average delay and packet dropping probability for both high and low priority data can be expressed.The simulation results verify the correctness of the theoretical derivation.Meanwhile,the proposed priority jump queuing strategy can significantly improve the drop performance of low-priority data. 展开更多
关键词 Stochastic geometry queuing theory D2D heterogeneous networks quasi-birth and death process
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部