Retaining the ultrathin structure of two-dimensional materials is very important for stabilizing their catalytic performances.However,aggregation and restacking are unavoidable,to some extent,due to the van der Waals ...Retaining the ultrathin structure of two-dimensional materials is very important for stabilizing their catalytic performances.However,aggregation and restacking are unavoidable,to some extent,due to the van der Waals interlayer interaction of two-dimensional materials.Here,we address this challenge by preparing an origami accordion structure of ultrathin twodimensional graphitized carbon nitride(oa-C_(3)N_(4))with rich vacancies.This novel structured oa-C_(3)N_(4) shows exceptional photocatalytic activity for the CO_(2) reduction reaction,which is 8.1 times that of the pristine C_(3)N_(4).The unique structure not only prevents restacking but also increases light harvesting and the density of vacancy defects,which leads to modification of the electronic structure,regulation of the CO_(2) adsorption energy,and a decrease in the energy barrier of the carbon dioxide to carboxylic acid intermediate reaction.This study provides a new avenue for the development of stable highperformance two-dimensional catalytic materials.展开更多
The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme.However,few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and...The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme.However,few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes.Herein,the heterogeneous single-atom Co-MoS2(SA Co-MoS2)is demonstrated to have excellent potential as a high-performance peroxidase mimic.Because of the well-defined structure of SA Co-MoS2,its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies.Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction,SA Co favors electron transfer mechanisms,while MoS2 relies on Fenton-like reactions.The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2.The present study not only develops a new kind of single-atom catalyst(SAC)as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.展开更多
基金Jilin Province Science and Technology Development Program,Grant/Award Number:20190201233JCProject for Self-innovation Capability Construction of Jilin Province Development and Reform Commission,Grant/Award Number:2021C026+3 种基金Program for JLU Science and Technology Innovative Research Team,Grant/Award Numbers:JLUSTIRT,2017TD-09National Natural Science Foundation of China,Grant/Award Numbers:12034002,51872116Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province,Grant/Award Number:JC2018004Excellent Young Foundation of Harbin Normal University,Grant/Award Number:XKYQ201304。
文摘Retaining the ultrathin structure of two-dimensional materials is very important for stabilizing their catalytic performances.However,aggregation and restacking are unavoidable,to some extent,due to the van der Waals interlayer interaction of two-dimensional materials.Here,we address this challenge by preparing an origami accordion structure of ultrathin twodimensional graphitized carbon nitride(oa-C_(3)N_(4))with rich vacancies.This novel structured oa-C_(3)N_(4) shows exceptional photocatalytic activity for the CO_(2) reduction reaction,which is 8.1 times that of the pristine C_(3)N_(4).The unique structure not only prevents restacking but also increases light harvesting and the density of vacancy defects,which leads to modification of the electronic structure,regulation of the CO_(2) adsorption energy,and a decrease in the energy barrier of the carbon dioxide to carboxylic acid intermediate reaction.This study provides a new avenue for the development of stable highperformance two-dimensional catalytic materials.
基金financially supported by the National Key Research and Development Program of China(No.2016YFA0200400)the Jilin Province Science and Technology Development Program(No.20190201233JC)+5 种基金the National Natural Science Foundation of China(Nos.51571100 and 51872116)the Natural Science Funds for Distinguished Young Scholars of Heilongjiang Province(No.JC2018004)the Excellent Young Foundation of Harbin Normal University(No.XKYQ201304)the National Postdoctoral Program for Innovative Talents(BX20180117)the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities.
文摘The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme.However,few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes.Herein,the heterogeneous single-atom Co-MoS2(SA Co-MoS2)is demonstrated to have excellent potential as a high-performance peroxidase mimic.Because of the well-defined structure of SA Co-MoS2,its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies.Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction,SA Co favors electron transfer mechanisms,while MoS2 relies on Fenton-like reactions.The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2.The present study not only develops a new kind of single-atom catalyst(SAC)as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.