期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize
1
作者 Peng Liu Langlang Ma +8 位作者 Siyi Jian Yao He guangsheng yuan Fei Ge Zhong Chen Chaoying Zou Guangtang Pan Thomas Lübberstedt Yaou Shen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2178-2195,共18页
Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,... Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,we performed genomic sequencing for 80 core maize germplasms and constructed a high-density genomic variation map using our newly developed pipeline(MQ2Gpipe).Based on the induction rate of EC(REC),these inbred lines were categorized into three subpopulations.The low-REC germplasms displayed more abundant genetic diversity than the high-REC germplasms.By integrating a genome-wide selective signature screen and region-based association analysis,we revealed 95.23 Mb of selective regions and 43 REC-associated variants.These variants had phenotypic variance explained values ranging between 21.46 and 49.46%.In total,103 candidate genes were identified within the linkage disequilibrium regions of these REC-associated loci.These genes mainly participate in regulation of the cell cycle,regulation of cytokinesis,and other functions,among which MYB15 and EMB2745 were located within the previously reported QTL for EC induction.Numerous leaf area-associated variants with large effects were closely linked to several REC-related loci,implying a potential synergistic selection of REC and leaf size during modern maize breeding. 展开更多
关键词 MAIZE genetic transformation embryonic callus selective signal association analysis
下载PDF
Genome assembly of the maize inbred line A188 provides a new reference genome for functional genomics 被引量:2
2
作者 Fei Ge Jingtao Qu +8 位作者 Peng Liu Lang Pan Chaoying Zou guangsheng yuan Cong Yang Guangtang Pan Jianwei Huang Langlang Ma Yaou Shen 《The Crop Journal》 SCIE CSCD 2022年第1期47-55,共9页
The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genoty... The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genotype and phenotype in maize.Here we describe the genome sequence and annotation of A188,a maize inbred line with high phenotypic variation relative to other lines,acquired by single-molecule sequencing and optical genome mapping.We assembled a 2210-Mb genome with a scaffold N50 size of 11.61 million bases(Mb),compared to 9.73 Mb for B73 and 10.2 Mb for Mo17.Based on the B73_Ref Gen_V4 genome,295 scaffolds(2084.35 Mb,94.30%of the final genome assembly)were anchored and oriented on ten chromosomes.Comparative analysis revealed that~30%of the predicted A188 genes showed large structural divergence from B73,Mo17,and W22 genomes,which causes high protein divergence and may lead to phenotypic variation among the four inbred lines.As a line with high embryonic callus(EC)induction capacity,A188 provides a convenient tool for elucidating the molecular mechanism underlying the formation of EC in maize.Combining our new A188 genome with previously reported QTL and RNA sequencing data revealed eight genes with large structural variation and two differentially expressed genes playing potential roles in maize EC induction. 展开更多
关键词 MAIZE Embryonic callus A188 Genome assembly Single-molecule sequencing
下载PDF
Transcriptomic responses in resistant and susceptible maize infected with Fusarium graminearum 被引量:2
3
作者 guangsheng yuan Xiujing He +7 位作者 Hui Li Kui Xiang Li Liu Chaoying Zou Haijian Lin Jiali Wu Zhiming Zhang Guangtang Pan 《The Crop Journal》 SCIE CAS CSCD 2020年第1期153-163,共11页
Gibberella ear rot(GER)caused by Fusarium graminearum(teleomorph Gibberella zeae)is a common maize disease that not only severely reduces grain yield but also contaminates maize grain with mycotoxins.We investigated t... Gibberella ear rot(GER)caused by Fusarium graminearum(teleomorph Gibberella zeae)is a common maize disease that not only severely reduces grain yield but also contaminates maize grain with mycotoxins.We investigated the molecular mechanism underlying the host defense responses against pathogen infection using comparative transcriptomic analysis.We injected F.graminearum spore suspensions into plants of resistant(IBM-81)and a susceptible(IBM-85)maize inbred line after pollination and performed RNA-seq 48,72,and 96 h after inoculation.Respectively 487 and 410 differentially expressed genes(DEGs)were induced in the resistant and susceptible lines across three time points,indicating that a stronger defense response was activated in the resistant than in the susceptible line.Among them,198 genes commonly induced in the two lines were subjected to pathway analysis,revealing that most of the DEGs were closely associated with defense and a wide range of metabolic activities.DEGs associated with pathogenesis-related protein 1(PR1)and regulation of salicylic acid were significantly enriched during F.graminearum infection,suggesting that these DEGs play dominant roles in maize resistance to GER.Our results provide a resource for future gene discovery and facilitate elucidation of the complex defense mechanisms involved in resistance to GER. 展开更多
关键词 Gibberella ear rot Fusarium graminearum Molecular mechanism RNA-seq Differentially expressed genes
下载PDF
Identification and functional analysis of miRNAs in developing kernels of a viviparous mutant in maize
4
作者 Haiping Ding Jian Gao +7 位作者 Mao Luo Hua Peng Haijian Lin guangsheng yuan Yaou Shen Maojun Zhao Guangtang Pan Zhiming Zhang 《The Crop Journal》 SCIE CAS 2013年第2期115-126,共12页
Given the important roles of miRNAs in post-transcriptional gene regulation, identification of differentially expressed miRNAs will facilitate the elucidation of molecular mechanisms underlying kernel development. In ... Given the important roles of miRNAs in post-transcriptional gene regulation, identification of differentially expressed miRNAs will facilitate the elucidation of molecular mechanisms underlying kernel development. In this study, we constructed a small RNA library to comprehensively represent the full complement of individual small RNAs and to characterize miRNA expression profiles in pooled ears of maize(Zea mays L.) at 10, 15,20, 22, 25 and 30 days after pollination(DAP). At least 21 miRNAs were differentially expressed. The differential expression of three of these miRNAs, i.e., miR528a, miR167a and miR160b, at each stage was verified by qRT-PCR. The results indicated that these miRNAs might be involved in kernel development. In addition, the predicted functions of target genes indicated that most of the target genes are involved in signal transduction and cell communication pathways, particularly the auxin signaling pathway. The expression of candidate germination-associated miRNAs was analyzed by hybridization to a maize genome microarray, and revealed differential expression of genes involved in plant hormone signaling pathways. This finding suggests that phytohormones play a critical role in the development of maize kernels. We found that in combination with other miRNAs, miR528a regulated a putative laccase, a Ring-H2 zinc finger protein and a MADS box-like protein, whereas miR167a and miR160b regulated multiple target genes,including ARF(auxin response factor), a member of the B3 transcription factor family. All three miRNAs are important for ear germination, development and physiology. The small RNA transcriptomes and mRNA obtained in this study will help us gain a betterunderstanding of the expression and function of small RNAs in the development of maize kernel. 展开更多
关键词 Ear germination-associated MIRNAS Microarray hybridization qRT-PCR ZEA mays
下载PDF
Study on the Flowering Habit of Ardisia mamillata Hance
5
作者 Juan DU guangsheng yuan Meng YE 《Agricultural Biotechnology》 CAS 2012年第3期12-14,17,共4页
This study aimed to investigate the flowering habit of Ardisia mamillata Hance, to provide theoretical basis for the crossbreeding of A. mamillata. Re- suits show that A. mamillata is not entomophilous but anemophilou... This study aimed to investigate the flowering habit of Ardisia mamillata Hance, to provide theoretical basis for the crossbreeding of A. mamillata. Re- suits show that A. mamillata is not entomophilous but anemophilous. The florescence lasts 40 d from the last 10 d of June to the first 10 d of August; the florescence of single flower is about 1 -3 d; there are two peaks of individual florescence; the gregarious flowering belongs to abundant centralized pattern, which is conducive to the reproductive success and provides convenience for the crossbreeding of A. mamiUata. 展开更多
关键词 Ardisia mamillata Hance Flowering phenology Pollination medium
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部